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“Computational scientists solve tomorrow’s problems with 

yesterday’s computers; computer scientists seem to do it 

other way around.” 

 

-anonymous 

From: Landau, R. H. A first course in Scientific computing. Princeton 

University Press, 2005. pp-1.
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Introduction 
Most of the processes related to simulations of biomolecular structures rely on 

energy minimization (EM) of the system. More specifically, in homology modeling of protein 
structure a key feature is the optimization of the model, which can be achieved by 
application of EM methods [1], such as conjugate gradient (CG) [2] and steepest descent 
(SD) [3]. Furthermore, molecular dynamics (MD) simulations usually start with energy 
minimization process [4]. The minimized structure is then submitted to MD simulation. 
From the computational point of view, EM of a protein model is a nonlinear optimization 
problem.  This class of problem involves minimizing an energy function of several 
variables, which may be subject to restrictions on the values of the variables [5]. Many 
computational methods have been developed over a number of years for the location of 
stationary points, some of which are appropriate for simulation of biomolecular systems. In 
these systems we deal with large molecules, such as proteins, DNA and complexes 
involving protein and ligands, and as a result the energy functions will depend on 
thousands of variables [5]. 

This tutorial describes the applications of the two major EM algorithms to simulation 
of complexes involving protein and ligand. These methodologies are very useful 
simulations when one wants to optimize the structure protein-ligand complexes [1]. We 
begin with an overview of both methodologies, followed by a description of an EM protocol 
applied to analysis of protein-ligand complexes. We have been using this protocol to 
successfully optimize structures of several protein targets. All protocols described here are 
intended to be run in the program GROMACS 4.0 [4]. This program was developed for 
molecular dynamics and energy minimization simulations of biomolecular systems [4]. It is 
currently in its 4.0 version (October 2009).   

 

Energy surface 
 Many problems in simulation of biomolecular systems can be formulated as an 
optimization of a multi-dimensional function. Optimization is general expression for locating 
stationary points on a potential energy surface. In most of the cases, the desired stationary 
point is a minimum, i.e. all second derivatives of this function are positive. In order to 
establish the general aspects related to optimization methods we need some definitions 
about surfaces. One dimensional potential energy function shows minima, maxima and 
points of inflexion. For higher-dimensional surfaces we may have a new attribute referred 
to as saddle point, as shown in Fig. (1). This figure is a plot of the function f(x,y) = y2 – x2, 
the vertical axis is shown as a function f(x,y), where we can clearly see the saddle. These 
points are a maximum in some variables and a minimum in the reminder. Most optimization 
methods determine the nearest stationary point, but a multi-dimensional functional may 
contain many different stationary points of the same type.  
 



6 
 

 
Fig. (1). Plot of the function f(x,y) = y2 – x2, the vertical axis is shown as a function 

f(x,y), where we have the saddle points. 
 

 
Let us consider an energy potential function V(r) for a system with N atoms, where 

we have 3N degrees of freedom. We need n independent variables to describe this 
system, which we denote here as r (x1, x2,…xn) , and it is expressed by the vector r 
represented below, 
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The gradient of the potential energy V is given by 
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The hessian of V(r) is expressed by the following equation, 
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At a stationary point we have that the gradient of V(q) is zero. In order to further 

characterize this stationary point we need to find the eigenvalues of the hessian calculated 
at that point. We a minimum point when all eigenvalues are positives, the maximum point is 
obtained when all eigenvalues are negative. Otherwise, we have the saddle point. 

So, the optimization methods deal with finding the minimum points. There are a 
plethora of algorithms available for such goal we are interest here in first-order algorithms, 
for locating the minima on molecular potential energy surfaces, as the one shown in Fig. 
(2), they will be described in the next sections. 

 

 
 

Fig. (2). Rugged potential surface. 
  
 

Energy minimization methods 
Energy minimization is carried out in order to remove or reduce possible geometric 

problems in the biomolecular systems, such as improbable bond distances, bond angles 
and torsion angles. The file em.mdp (Table 1) shows the commands used to inform 
GROMACS to perform energy minimization. This protocol employed steepest descent 
method for minimization, but can be easily changed to conjugate gradient. 
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Table 1. List of GROMACS commands needed to run energy minimization (SD method). 

GROMACS Commands Options 
title                                          =  prot+lig EM(SD) 
define                   =  -DFLEX_SPC 
constraints           =  none 
integrator               =  steep 
dt                      =  0.002     
nsteps                   =  2000 
nstlist                            =  10 
ns_type             =  grid 
rlist =  1.0 
coulombtype =  PME 
rcoulomb =  1.0 
rvdw =  1.4 
fourierspacing =  0.12 
fourier_nx =  0 
fourier_ny =  0 
fourier_nz =  0 
pme_order =  6 
ewald_rtol =  1e-5 
optimize_fft =  yes 
;       Energy minimization parameters 
emtol =  1000.0 
emstep =  0.01 
 

Let us consider a set of independent variables r = (x1,y1,z1,x2,y2,z2,……xn,yn,zn) and 
an objective function V(r), the goal here is to find that set of values for the independent 
variables, for which the objective function has its minimum value V(r*) = min (V(r)). For a 
binary complex with N atoms, the 3 N components of r are the atomic coordinates and V is 
the potential energy (force field) [6]. Many of the modern molecular mechanics force fields 
can be interpreted in terms of the relatively simple parameters, such as bond stretching, 
bond angle and torsion angle. Energetic penalties are related with the deviations from 
equilibrium values, such as, the equilibrium point of the spring.  The most common 
interaction potential energy (V(r)) for a biomolecular system involves atomic positions and 
can be expressed as follows: 
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(Eq. 4) 

 
where the potential energy is function of the positions r of N atoms. The first term in the 
equation 4 provides energy due to the stretching of the bond lengths, the second term to 
the bending of the bond angles. The third term represents the changes in torsion angles. 
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The forth term accounts for non-bonded interaction, called Lennard-Jones potential, which 

is due to van der Waals force. The constants ij are empirical parameters and rij is the 
interatomic distance between atoms i and j.  The fifth term describes electrostatic 
interaction. This interaction may be modeled using Coulomb potential that varies as the 
inverse of the interatomic distance (rij). The variables qi and qj are partial atomic charges, 
these are non-integral charge values attributed to each atom in the system, which are 
designed to reproduce the electrostatic properties of the molecule.  The permittivity of free 

space is represented by o. In the Lennard-Jones (LJ) potential the term attraction is 
modeled using 1/r6 term. When two atoms are closer there is repulsive interaction, 
modeled using 1/r12 term. These two terms together compose the LJ potential. 

Modern molecular dynamics programs use force fields built as described, with a 
small number of differences in terms and parameters used to construct the potential energy 
(force field). One of the most used force field for biomolecular systems is AMBER (Assisted 
Model Building and Energy Refined) [7]. AMBER was calibrated against accurate quantum 
mechanical studies and experimental information derived from techniques such as neutron 
diffraction and microwave spectroscopy [8]. We are not going to describe in details how 
this potential energy is calculated (force field) in the program GROMACS, the readers 
interested in such details may read the original GROMACS reference [4]. GROMACS 4.0 
includes quite a few force fields, and additional ones are available on the website, and as 
described in the GROMACS manual page 89 (www.gromacs.org): ”Whenever using this 
force field, please cite the references [9-14], and do not call it GROMACS force field, 
instead name it GROMOS-87 [12] with corrections as detailed in [13, 14].”  
 To understand the first-order minimization methods used in modern molecular 
simulation packages such as GROMACS [4] let us consider a well-behaved function f(x). 
This function f(x) needs to be a well-behaved function then we need the gradient to be 
continuous. The gradient (g) is the vector whose ith component is f/xi. It points towards 
the direction of maximum rate of increase of f(x). On the other hand, -f points towards the 
direction of greatest decrease. The vector f is, at any point xo, normal to the contour of 
constant functions passing through xo. For an n-dimensional case the gradient of function f 
is given by, 
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The function f(x) can be expanded as Taylor series about the point xo as follows, 
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We may generalize this function to n dimensions substituting x by the vector r and 
introducing matrices for the various derivatives. A given optimization method can be 
classified by its order, which is the highest order derivative that is employed in the method. 
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First order methods cut the Taylor expansion after the second term, making use of 
information associated with local slope of the potential energy surface (the first derivative).  
Physically, this first derivative of the potential energy is the force (F), as follows, 
 

VF   (Eq. 7) 
 

Here we need to make a small note to explain how all algorithms will be described in 
the this tutorial. All algorithms described here are iterative; that is, we begin from some 
start point on a surface, and then proceed further in cycles, according to an algorithm 
hopefully toward a stationary point. Each cycle is known as iteration, and it will be 
represented by a symbol k to indicate the iteration count. We use this symbol as subscript 
to variables to indicate this iteration count. For instance, the biomolecular configuration 
prior to the kth iteration is specified by the 3N dimensional vector rk-1. This is the initial 
structure, which can be a structure obtained from X-ray crystallography. The SD method is 
classified as a first-order method and was put forward by Wiberg [3]. The method of SD for 
finding a local minimum of f(x) consists of three steps.  
1) A descendent direction is taken, which is represented by a 3N dimensional vector of unit 
length, uk.  

2) A descent step size, indicated by the scalar k, is determined.  
3) Finally, the descent step is taken according to the following equation, 
 

kkkk urr  1  (Eq. 8) 

 
where k indicates the iteration count. The unit vector ( uk) is given by the following 
equation, 
 

F

F
u k  (Eq. 9) 

 
In most of the applications of the SD method in energy minimization the step size 

firstly has a predetermined default values. If the initial iteration leads to a decrease in 
energy, the step size is augmented by a multiplicative factor (e.g. 1.2) for the second 
iteration. This process is repeated as long it reduces the energy. When a step produces a 
raise in energy function, it is understood that the algorithm has leapt across the valley 
which contains the minimum and up the slope on the opposite face [15]. The step size is 
then reduced by a multiplicative factor (e.g. 0.2). The step size depends on the 
characteristics of the energy function; for an energy function represented by a flat surface, 
large step size would be more appropriate. On the other hand, rugged energy surfaces as 
shown in Fig. (2) are difficult to be evaluated with SD algorithm, since a large step size 
would take far from the minimum. The rugged potential energy surfaces are characteristics 
of multidimensional biomolecular systems, such as protein structures. 

Specifically for implementation of SD method in GROMACS, a maximum initial 

displacement () should be given (e.g. 0.01 nm). Then force and potential energy are 
calculated, and new positions rk are calculated by a modified equation (8), given by, 

 

kkkk trr  1  (Eq. 10) 
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In the GROMACS the unit vector uk is replaced by tk given by the following equation, 
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where Fk is the force. The notation max(|Fk|) means the largest of the absolute values of 
the force components. The forces and potential energy are again calculated for the new 
positions. 

If (Vk < Vk-1) the new positions are accepted and k+1 = 1.2 k . 

If (Vk  Vk-1) the new positions are rejected and k+1 = 0.2 k . 
The algorithm stops when either a user specified number of force evaluations (nstep 

in Table 1) has been performed (e.g. 100), or when the maximum of the absolute values of 
the force (gradient) components is smaller than a specified value (emtol in Table 1). Since 
force truncation generates some noise in the potential energy evaluation, the stopping 
criterion should not be made too tight to avoid endless iterations. 

 When running the implementation of SD algorithm for energy minimization in the 
GROMACS the command integrator is set to steep (integrator =  steep, in Table 1), the 
maximum step size is indicated by emstep [nm, 10-9 m ], and the tolerance is emtol [kJ mol-
1 nm-1]. For the protocol described here emstep = 0.01 nm and emtol = 1000 kJ mol-1 nm-1, 
as shown in Table 1. 

GROMACS presents yet another energy minimization method, known as conjugate 
gradient algorithm. This method has been introduced by Fletcher and Reeves [2]. 
Conjugate gradient algorithm produces a set of directions which does not show the 
oscillatory behavior of the SD algorithm in rugged surfaces (Fig. (2)). In the SD algorithm, 
both gradient and the direction of successive steps are normal to the contour of constant 
energy functions. On the other hand, in the conjugate gradient method, the gradients at 
each point are orthogonal but the directions are not. These directions are conjugate, 
indeed, as said by Leach in page 265 [8]: “the method is more properly called the 
conjugate directions method”.  

Starting from an initial structure (iteration 1), where the gradient is g1, the first search 
direction is given by, 

 

11 gs   (Eq. 12) 

 
 For n-th iteration, the conjugate gradient algorithm moves in a direction sk from 

point xk where sk is determined from the gradient at the point and the preceding direction 
vector sk-1, as follows, 

1 kkkk b sgs  (Eq. 13) 

 
where the parameter bk is a weighting factor given by 
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CG method is considered slower than SD in the first steps of the energy 
minimization, but becomes faster closer to the energy minimum, and the overall 
performance may be faster for CG method as we will see in the next sections. In the 
program GROMACS, the parameters and stop criterion are the same as for SD.  

In addition to CG and SD, GROMACS has option to perform energy minimization 
using L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian 
minimizer). This algorithm approximates the inverse hessian by a predetermined number of 
corrections from previous steps [16, 17]. For minimization of protein-ligand complexes 
discussed in this tutorial we employed both methodologies, in order to compare the overall 
performance of them.  
 

Commands needed to run GROMACS 4.0.5 for EM 
 In this tutorial all commands are shown in italics in the following lines. Lines started 
with “>” are command lines. We employed the double precision option to run GROMACS, 
in order to have more accurate results. A small comment here, you may generate lig.gro 
directly the PRODRG [18], we keep this step for didactic reasons.  To generate GROMACS 
structure files (__.gro) we do as follows, 
>editconf_d -f lig.pdb -o lig.gro 
>pdb2gmx_d -ignh -ff gmx -f prot.pdb -o prot.gro -p prot.top -water spce 
 

Edit file lig.gro and copy atomic coordinates and paste in the file prot.gro. Add 
number of atoms to the second line of file prot.gro. Edit the file prot.top and add the 
following line “#include  lig.itp”, after the “forcefield” include information  about the ligand in 
the last line. The information to be included in the last line is the following:  
LIG     1    
And then type the following commands: 
>editconf_d -bt cubic -f prot.gro -o prot.gro -d 1.0 
>genbox_d -cp prot.gro -cs spc216.gro -o prot_b4ion.gro -p prot.top 
>grompp_d -f em.mdp -c prot_b4ion.gro -p prot.top -o prot_b4ion.tpr 
 

Here we may get the message “Note: system has non-zero charge”, and also 
indication of charge. This information will be employed in the following step “genion”. For 
instance, if your system presents a charge of +4 you need to neutralize this positive charge 
adding counter-ions, specifically we neutralize the positive charge adding Chlorine atoms, 
as follows: 
>genion_d -s prot_b4ion.tpr -o prot_b4em.gro -nname Cl -nn 4 -g prot_ion.log 
 
Choose option 13. Edit the file prot.top and subtract the number of charges from the 
number of solvent molecules. For instance, the line with information about the solvent was: 
SOL              18725 
and it will be, 
SOL              18721 
Now we add a line with ion, for instance Cl, as follows: 
Cl                 4 
 
For systems with negative charges we add positive charges represented by Na ions. The 
commands for energy minimization using SD are described in Table 1. To change the EM 
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to CG you should edit em.mdp file modify the commando integrator CG. We now run 
energy minimization step, we type the following commands: 
>grompp_d -f em.mdp -c prot_b4em.gro -p prot.top -o em.tpr 
>mdrun_d -v -s em.tpr -e em -o em -c after_em -g emlog >& em.job & 

 
Now we have finished our EM for a complex involving protein and ligand. We will 

describe the analysis of potential energy. Use “g_energy” to analyze the potential energy 
output (the md.edr file), as follows, 
>g_energy_d –f em.edr –o em.xvg 
 
We entered “Potential” followed by <enter> to end selection. All energies are expressed in 
kJ/mol. Use the g_energy command to obtain other components (e.g. potential energy, 
etc.). To visualize we use the xmgrace, which is WYSIWYG tool to generate two-
dimensional plots of numerical data. It runs under various (if not all) flavors of Unix/Linux. It 
also runs under VMS, OS/2, and Windows (95/98/NT/2000/XP). It can be downloaded at 
http://plasma-gate.weizmann.ac.il/Grace/ . To generate a plot for potential energy do as 
follows, 
>xmgrace em.xvg 
 

In the next sections three applications of both EM methods will be discussed, all 
involving protein targets employed in SBVS studies. The binary complexes involving 
CDK2-roscovitine, PNP-Immucillin-H and SK-shikimate were minimized using SD and CG 
methodologies. All simulations were performed in a HP mobile workstation Processor Intel 
Core 2 Duo T9400 / 2.53 GHz, 4GB of RAM, which shows a performance of 2594.810 
GFlops. 
 
 

Human cyclin-dependent kinase 2 
 We have applied the above described EM protocols to the structure of CDK2 (EC 
2.7.11.22) in complex with roscovitine (PDB access code: 2a4l) [19].  Plots for potential EM 
simulations using SD and CG methodologies are shown in Fig. (3) and Fig. (4), 
respectively. For SD we have that the structure converged 2317 steps, to a potential 
energy of -10.3 .105 kJ/mol in a CPU time of 1926 s. CG minimization converged in 106 
energy evaluations, to a potential energy of -9.40 .105  in a CPU time of 90 s. The CG is 
21.6 times faster than SD nevertheless SD generated a structure with lower potential 
energy. 
   
 

http://plasma-gate.weizmann.ac.il/Grace/
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Fig. (3). EM of the complex CDK2-roscovitine using SD methodology. 

 

 
 

Fig. (4). EM of the complex CDK2-roscovitine using CG methodology. 
 

Human purine nucleoside phosphorylase (HsPNP) 
EM protocols were applied to the structure of PNP (EC 2.4.2.1) in complex with 

immucilin-H (PDB access code: 1pf7) [20].  Plots for potential EM simulations using SD 
and CG methodologies are shown in Fig. (5) and Fig. (6), respectively. For SD we have 
that the structure converged 2346 steps, to a potential energy of -9.40 .105 kJ/mol in a 
CPU time of 1804 s. CG minimization converged in 106 energy evaluations, to a potential 
energy of -8.87 .105  in a CPU time of 138 s. The CG is more 17 times faster than SD 
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nevertheless SD generated a structure with lower potential energy, as observed for the 
complex involving CDK2 and roscovitine. 

 

Fig. (5). EM of the complex PNP-ImmH using SD methodology. 

 

Fig. (6). EM of the complex PNP-ImmH using CG methodology. 

 

Shikimate kinase 
We have applied the above described EM protocols to the structure of SK (EC 

2.7.1.71) in complex with shikimate (PDB access code: 1we2) [21].  Plots for potential EM 
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simulations using SD and CG methodologies are shown in Fig. (7) and Fig. (8), 
respectively. For SD we have that the structure converged 553 steps, to a potential energy 
of -5.60 .105 kJ/mol in a CPU time of 250 s. CG minimization converged in 33 energy 
evaluations, to a potential energy of - 5.22 .105  in a CPU time of 16 s. The CG is more 
15.6 times faster than SD nevertheless SD generated a structure with lower potential 
energy, as observed for previously analyzed complexes. 

 

Fig. (7). EM of the complex SK-shikimate using SD methodology. 

 

Fig. (8). EM of the complex SK-shikimate using CG methodology. 
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Final remarks 
In this tutorial we discussed the main features of SD and CG methodologies that can 

be employed to evaluate protein-ligand interaction. All examples were based on protein 
targets that we have been working on the last years [19-21]. From the three examples 
discussed here, we summarize the key structural characteristics inferred from MD 
simulations focused on protein-ligand complexes. 

1) CG algorithm is from 15.6 to 21.6 times faster than SD, which indicates the 
superiority of this algorithm for time performance. Analysis of potential energy 
plots (Figures 3 to 8) clearly shows the dramatically drop of energy in few steps 
of minimization. 

2) Analysis of potential energy at the end of minimization process indicated that the 
SD presents better performance in all three cases analyzed here. 

3) Since reaching global minima is the „ultimate goal‟ of EM algorithms it is tempting 
to speculate that we should employ SD for simulations of protein-ligand 
complexes to guarantee such objective. 
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Abbreviations 
 
CG  = Conjugate gradient 
CDK   = Cyclin-dependent kinase 
HsPNP = Human purine nucleoside phosphorylase 
ImmH   = Immucillin-H 
MtSK  = Shikimate kinase from Mycobacterium tuberculosis 
PDB   = Protein data bank 
PNP   = Purine pucleoside phosphorylase 
SBSV  = Structure-based virtual screening 
SD  = Steepest descent 
SK   = Shikimate kinase 
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