
©
2

0
1

6
 D

r.
 W

a
lt
e
r

F
.

d
e

 A
z
e

v
e

d
o

 J
r.

1

www.python.org

A torsion angle is defined by four points,

as shown in the figure here. Points P1, P2,

and P3 define one plane, points P2, P3,

and P4 define a second plane. The angle

between these two planes is referred to as

torsion angle .

 P1

P2
P3

P4

Torsion Angle

2

www.python.org

To determine the torsion angle , we need

to consider three vectors connecting

points P1, P2, P3 , and P4 , named here as

q1, q2, and q3. Boldface is used to

indicate vectors. The cross product of q1

and q2 (q1xq2) defines a vector

perpendicular to the plane P1P2P3, and the

cross product q2xq3 defines a vector

normal to the plane P2P3P4 . In the figure,

we clearly see that the angle between

q1xq2 and q2xq3 is also . Therefore, we

just have to determine the angle between

n1 and n2, which are the unit vectors along

q1xq2 and q2xq3, respectively. Below we

have equations used to calculate the unit

vectors n1 and n2,

3

21

21
1

qq

qq
n

n1 n2

P4

P3P2

P1

q2

q3

q1xq2

q2xq3

q1

32

32
2

qq

qq
n

Boldface is used to indicate vectors.

Torsion Angle

www.python.org

In addition, we define unit orthogonal

vectors u1, u2, and u3 as follows:

the cosine and sine are given by:

Then, torsion angle is as follows,

4

132

2

2
3

21

uu u

q

q
u

n u

21

11

un

un

.

.cos

sen

21

11

un

un
2tana

n1 n2

P4

P3P2

P1

q2

q3

q1xq2

q2xq3

q1

You have to use atan2 function, which is

available in Python, to determine the

torsion angle.

Torsion Angle

www.python.org

In summary, to calculate the torsion angle

 for a system with four points, we have to

follow the steps shown below.

1) Calculate vectors q1, q2 and q3 as

follows:

where i, j, and k are unit vectors along x,y,

and z axis, respectively. We consider an

orthonormal coordinate system.

2) Calculate cross vectors q1 x q2 and q2 x

q3.

5

q1 x q2

q2 x q3

q2 = (x3 – x2)i + (y3 – y2)j + (z3 – z2)k

q1 = (x2 – x1)i + (y2 – y1)j + (z2 – z1)k

q3 = (x4 – x3)i + (y4 – y3)j + (z4 – z3)k

n1 n2

P4

P3P2

P1

q2

q3

q1xq2

q2xq3

q1

Torsion Angle

www.python.org

3) Calculate normal vector to planes, as

follows:

4) Calculate unit orthogonal vectors

5) Calculate torsion angle :

6

21

11

un

un
2tana

21

11

un

un

.

.cos

sen

21

21
1

qq

qq
n

32

32
2

qq

qq
n

132

2

2
3

21

uu u

q

q
u

n u

n1 n2

P4

P3P2

P1

q2

q3

q1xq2

q2xq3

q1

Torsion Angle

www.python.org

Example. Calculate the torsion angle

between the planes defined by the points

P1, P2, P3 e P4, using the coordinates

indicated below.

We could think that each coordinate is an

atomic coordinate, as the ones available

in a PDB file.

7

kjip1 0.000 10.351 8.326

 0.000 9.000 9.000 kjip2

kjip3 0.000 9.000 10.325

kjip4 0.000 7.766 11.096

P1

q2

q3

8.326 10.351 0.000

9.000 9.000 0.000

10.325 9.000 0.000

11.096 7.766 0.000

P2

P3

P4

q1

Torsion Angle (Example)

www.python.org

Answer

Step 1: Here we calculate the vectors q1,

q2, and q3.

8

q2 = (x3 – x2)i + (y3 – y2)j + (z3 – z2)k = (1.351)i + (0)j = 1.351i

q1 = (x2 – x1)i + (y2 – y1)j + (z2 – z1)k = (0.674)i + (-1.351)j = 0.674i – 1.351j

q3 = (x4 – x3)i + (y4 – y3)j + (z4 – z3)k = (0,.771)i + (-1.234)j = 0.771i -1.234j

Torsion Angle (Example)

www.python.org

Step 2: Now we calculate the cross

vectors, as follows:

Cross vectors:

i x i = 0 j x j = 0 k x k = 0

i x j = k j x k = i k x i = j

i x k = - j j x i = -k k x j = -i

9

q1 x q2 = (0.674i – 1.351j) x (1.351i) = 1.8252k

q2 x q3 = (1.351i) x (0.771i -1.234j) = - 1.6671k

Step 3: Here we calculate the normal

vectors:

k
k

qq

qq
n

21

21
1

1.8252

1.8252

-k
k

qq

qq
n

32

32
2

1.6671

1.6671 -

Torsion Angle (Example)

www.python.org

Step 4: Calculate unit vectors:

10

j-kiuu u

i
i

q

q
u

-kn u

132

2

2
3

21

)(

1.351

1.351

Step 5.: Finally, the torsion angle

1.

-1.cos

jkun

kkun

21

11

sen

oa 180
1

1
2tan

P1

q2

q3

8.326 10.351 0.000

9.000 9.000 0.000

10.325 9.000 0.000

11.096 7.766 0.000

P2

P3

P4

q1

Torsion Angle (Example)

www.python.org

Abstract

Program to calculate torsion angle in degrees for a system with four points (P1,P2,P3,P4).

The torsion angle is between two planes, the first defined by the points P1, P2 and P3 and

the second plane by the points P2, P3 e P4. The results is shown on screen.

Torsion angle for system with four points

Program: torsion_angle.py

11

Program: torsion_angle.py

www.python.org

def main():

Call initial_vectors() functions

p1,p2,p3,p4 = initial_vectors()

Call calc_q_vectors(p1,p2,p3,p4) function

q1,q2,q3 = calc_q_vectors(p1,p2,p3,p4)

Call calc_cross_vectors(q1,q2,q3) function

q1_x_q2, q2_x_q3 = calc_cross_vectors(q1,q2,q3)

Call calc_normals(q1_x_q2,q2_x_q3) function

n1, n2 = calc_normals(q1_x_q2,q2_x_q3)

Call calc_unit_orthogonal_vectors(n2,q2) function

u1,u2,u3 = calc_unit_orthogonal_vectors(n2,q2)

Call calc_torsion_angle(u1,u2,u3) function

calc_torsion_angle(n1,u1,u2,u3)

main()
12

In the main program we call the following functions: initial_vectors(),

calc_q_vectors(p1,p2,p3,p4), calc_cross_vectors(q1,q2,q3),

calc_normals(q1_x_q2,q2_x_q3), calc_unit_orthogonal_vectors(n2,q2), and

calc_torsion_angle(n1,u1,u2,u3).

Program: torsion_angle.py (main program)

www.python.org

def initial_vectors():

"""Function to set up initial vectors"""

import numpy as np

Set initial values for arrays

p1 = np.zeros(3)

p2 = np.zeros(3)

p3 = np.zeros(3)

p4 = np.zeros(3)

Set initial coordinates (http://www.stem2.org/je/proteina.pdf)

p1[:] = [8.326, 10.351, 0.000]

p2[:] = [9.000, 9.000, 0.000]

p3[:] = [10.325, 9.000, 0.000]

p4[:] = [11.096, 7.766, 0.000]

return p1,p2,p3,p4
13

In this function we define the coordinates for four points and return them. We use

NumPy arrays for the coordinates.

Function: initial_vector()

www.python.org

def calc_q_vectors(p1,p2,p3,p4):

"""Function to calculate q vectors"""

import numpy as np

Calculate coordinates for vectors q1, q2 and q3

q1 = np.subtract(p2,p1) # b - a

q2 = np.subtract(p3,p2) # c - b

q3 = np.subtract(p4,p3) # d - c

return q1,q2,q3 14

This function calculates q vectors and returns them. We use the .subtract from NumPy

library.

Function: calc_q_vectors()

www.python.org

def calc_cross_vectors(q1,q2,q3):

"""Function to calculate cross vectors"""

import numpy as np

Calculate cross vectors

q1_x_q2 = np.cross(q1,q2)

q2_x_q3 = np.cross(q2,q3)

return q1_x_q2, q2_x_q3

15

Here we calculate the cross vectors, using .cross from NumPy library, as shown below.

Function: calc_cross_vectors()

www.python.org

def calc_normal(q1_x_q2,q2_x_q3):

"""Function to calculate normal vectors to planes"""

import numpy as np

Calculate normal vectors

n1 = q1_x_q2/np.sqrt(np.dot(q1_x_q2,q1_x_q2))

n2 = q2_x_q3/np.sqrt(np.dot(q2_x_q3,q2_x_q3))

return n1,n2

16

Now we calculate normal vectors to planes, using .dot and .sqrt from NumPy library, as

shown below.

Function: calc_normal()

www.python.org

def calc_unit_orthogonal_vectors(n2,q2):

"""Function to calculate unit orthogonal vectors"""

import numpy as np

Calculate unit vectors

u1 = n2

u3 = q2/(np.sqrt(np.dot(q2,q2)))

u2 = np.cross(u3,u1)

return u1,u2,u3

17

This function calculates unit orthogonal vectors, using .cross, .dot, and .sqrt from

NumPy library, as shown below.

Function: calc_unit_orthogonal_vectors()

www.python.org

def calc_torsion_angle(n1,u1,u2,u3):

"""Function to calculate torsion angle"""

import numpy as np

import math

Calculate cosine and sine

cos_theta = np.dot(n1,u1)

sin_theta = np.dot(n1,u2)

Calculate theta

theta = -math.atan2(sin_theta,cos_theta)

it is different from atan2 from fortran math.atan2(y,x)

theta_deg = np.degrees(theta)

Show results

print("theta (rad) = ",theta)

print("theta (deg) = ",theta_deg)
18

Finally, we calculate the torsion angle using atan2 from math library and the .degree

and .dot from NumPy library, as shown below.

Function: calc_torsion_angle()

www.python.org

19

To run torsion_angle.py, type python torsion_angle.py, as shown below.

C:\Users\Walter>python torsion_angle.py

theta (rad) = -3.141592653589793

theta (deg) = -180.0

C:\Users\Walter>

Running torsion_angle.py

www.python.org

-BRESSERT, Eli. SciPy and NumPy. Sebastopol: O’Reilly Media, Inc., 2013. 56 p.

-DAWSON, Michael. Python Programming, for the absolute beginner. 3ed. Boston: Course Technology, 2010. 455 p.

-HETLAND, Magnus Lie. Python Algorithms. Mastering Basic Algorithms in the Python Language. Nova York: Springer

Science+Business Media LLC, 2010. 316 p.

-IDRIS, Ivan. NumPy 1.5. An action-packed guide dor the easy-to-use, high performance, Python based free open source NumPy

mathematical library using real-world examples. Beginner’s Guide. Birmingham: Packt Publishing Ltd., 2011. 212 p.

-KIUSALAAS, Jaan. Numerical Methods in Engineering with Python. 2ed. Nova York: Cambridge University Press, 2010. 422 p.

-LANDAU, Rubin H. A First Course in Scientific Computing: Symbolic, Graphic, and Numeric Modeling Using Maple, Java,

Mathematica, and Fortran90. Princeton: Princeton University Press, 2005. 481p.

-LANDAU, Rubin H., PÁEZ, Manuel José, BORDEIANU, Cristian C. A Survey of Computational Physics. Introductory

Computational Physics. Princeton: Princeton University Press, 2008. 658 p.

-LUTZ, Mark. Programming Python. 4ed. Sebastopol: O’Reilly Media, Inc., 2010. 1584 p.

-MODEL, Mitchell L. Bioinformatics Programming Using Python. Sebastopol: O’Reilly Media, Inc., 2011. 1584 p.

-TOSI, Sandro. Matplotlib for Python Developers. Birmingham: Packt Publishing Ltd., 2009. 293 p.

Last update February, 4th 2016.

References

www.python.org

20

Colophon

This text was produced in a DELL Inspiron notebook with 6GB of memory, a 750 GB

hard disk, and an Intel® Core® i5-3337U CPU @ 1.80 GHz running Windows 8.1. Text

and layout were generated using PowerPoint 2013 and graphical figures were

generated by Visual Molecular Dynamics

(VMD)(http://www.ks.uiuc.edu/Research/vmd/). This tutorial uses Arial font.

www.python.org

13

Author

I graduated in Physics (BSc in Physics) at University of Sao Paulo (USP) in 1990. I

completed a Master Degree in Applied Physics also at USP (1992), working under

supervision of Prof. Yvonne P. Mascarenhas, the founder of crystallography in Brazil.

My dissertation was about X-ray crystallography applied to organometallics compounds

(De Azevedo Jr. et al.,1995) (http://dx.doi.org/doi:10.1107/S0108270194009868).

During my PhD I worked under supervision of Prof. Sung-Hou Kim (University of

California, Berkeley. Department of Chemistry), on a split PhD program with a

fellowship from Brazilian Research Council (CNPq)(1993-1996). My PhD was about the

crystallographic structure of CDK2 (Cyclin-Depedent Kinase 2) (De Azevedo Jr. et al.,

1996)(http://www.ncbi.nlm.nih.gov/pubmed/9552391). In 1996, I returned to Brazil. In April 1997, I finished my

PhD and moved to Sao Jose do Rio Preto (SP, Brazil) (UNESP) and worked there from 1997 to 2005. In 1997, I

started the Laboratory of Biomolecular Systems- Department of Physics-UNESP - São Paulo State University. In

2005, I moved to Porto Alegre/RS (Brazil), where I am now. My current position is coordinator of the Laboratory

of Computational Systems Biology at Pontifical Catholic University of Rio Grande do Sul (PUCRS). My research

interests are focused on application of computer simulations to analyze protein-ligand interactions. I'm also

interested in the development of biological inspired computing and application of these algorithms to molecular

docking simulations, protein-ligand interactions and other scientific and technological problems. I published over

160 scientific papers about protein structures and computer simulation methods applied to the study of biological

systems (H-index: 33). These publications have over 3700 citations. I am regional editor for South and Central

America for Current Drug Target (ISSN: 1873-5592 (Online), ISSN: 1389-4501 (Print)

)(http://benthamscience.com/journal/editorial-board.php?journalID=cdt#top), academic editor for Current

Bioinformatics (http://benthamscience.com/journals/current-bioinformatics/editorial-board/#top) and guest editor

for Current Medicinal Chemistry. Academic Profile on Google Scholar Link to Facebook

More information at www.azevedolab.net .

www.python.org

14

http://dx.doi.org/doi:10.1107/S0108270194009868
http://benthamscience.com/journal/editorial-board.php?journalID=cdt#top
http://benthamscience.com/journals/current-bioinformatics/editorial-board/#top
https://scholar.google.com.br/citations?hl=pt-BR&user=HWwJXJUAAAAJ&view_op=list_works&sortby=pubdate
https://www.facebook.com/Prof.Walter

