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A torsion angle is defined by four points,
as shown in the figure here. Points P,, P,,
and P; define one plane, points P,, Pg,
and P, define a second plane. The angle

between these two planes is referred to as
torsion angle 6.
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To determine the torsion angle 6, we need
to consider three vectors connecting
points P,, P,, P;, and P, , named here as
d,» g4, and q;. Boldface is used to
indicate vectors. The cross product of q,
and g, (gq.xq,) defines a vector
perpendicular to the plane P,P,P,, and the
cross product (,xq, defines a vector
normal to the plane P,P;P, . In the figure,
we clearly see that the angle between
g,Xg, and g,xq; is also 6. Therefore, we
just have to determine the angle between
n, and n,, which are the unit vectors along
q.Xq, and g,xq; respectively. Below we
have equations used to calculate the unit
vectors n,; and n,,

n — d, xq, N - g, X0, Boldface is used to indicate vectors.
=2 — 127 M3

‘qlqu‘ i |Q2Xq3|
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In addition, we define unit orthogonal
vectors u,, U,, and u; as follows:

u, =n,
o P

U, = 22

3 9,

U, =U, xU,

the cosine and sine are given by:

cos—-60=n,u,
sen—6=n,.u,

Then, torsion angle 0 is as follows,

n .
0:—atan2( L ulj
n,-u,

You have to use atan2 function, which is
available in Python, to determine the
torsion angle.




Torsion Angle

@, python

www.python.org

In summary, to calculate the torsion angle

0 for a system with four points, we have to

follow the steps shown below.

1) Calculate vectors q,, q, and q; as
follows:

Ay = (Xo =X )l + (Yo —y1)] +(z2,— 21 )k

0, = (X3 = X))l + (Y3 —VY,)] + (23— 2, )k

Oz = (X4 = X3)I + (Y4 —Y3)] + (2, —Z3)K

where i, |, and k are unit vectors along x,y,
and z axis, respectively. We consider an
orthonormal coordinate system.

2) Calculate cross vectors g, X g, and g, X

A d; X0,
d, X Q3
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3) Calculate normal vector to planes, as
follows:

d, xd, g, %0,

n, =——% n,=—%2-%

g, xq,] * g, xqy

4) Calculate unit orthogonal vectors

u, =n,
d,
u, = —%
© oy
U, =U,xU,

5) Calculate torsion angle 6:

cos-6=n,.u, 0 — _atano MY
sen—6=n,.u, n,-u, )
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Example. Calculate the torsion angle 6
between the planes defined by the points
P,, P,, P; e P,, using the coordinates

) : 8.326 10.351 0.000
indicated below.

10.325 9.000 0.000

p, =8.326i +10.351j+ 0.000k
p, =9.000i + 9.000j + 0.000k
P, =10.3251 + 9.000j + 0.000k
p, =11.0961 +7.766] +0.000k

9.000 9.000 0.000

11.096 7.766 0.000

We could think that each coordinate is an
atomic coordinate, as the ones available
in a PDB file.
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Answer
Step 1: Here we calculate the vectors q;,

g,, and qs.

Gy = (Xo = X )i + (V= ¥4 )j + (2, — 2, )k = (0.674)i + (-1.351)j = 0.674i — 1.351;]

Oy = (Xg = X)) + (Y3 =¥ )) +(Z5—2;)k = (1.351)1 + (0)) = 1.3511

Oz = (X4 = X3 + (Y4 —VY3)] + (2, —253)k =(0,.771)i + (-1.234)) = 0.7711 -1.234]
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Step 2: Now we calculate the cross
vectors, as follows:

g, X g, =(0.674i — 1.351j ) x (1.351i) = 1.8252k

g, X 05 = (1.351i) X (0.771i -1.234j) = - 1.6671k

Step 3. Here we calculate the normal
vectors:

q,xq, _18252k _,

n, = = Cross vectors:
g, xq,|  1.8252 O L0 kxk=0
ixj=k jxk=i kxi=]j
n _C|2><q3_-1.6671k__k ixk=-j jxi=-k kxj=-i
2_ —

9,xq,] 16671
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Step 4: Calculate unit vectors:

U, =N, = -k 8.326 10.351 0.000
g = 9 ~ 1.351i _ P,
’ ‘qz‘ 1.351 10.325 9.000 0.000
: : P
U, =UyxU, =ix(-K) =] 9.000 9.000 0.000 3

Step 5.: Finally, the torsion angle

11.096 7.766 0.000
cos-0=n,u, =k-(-k)=-1
sen—-6d=n,.uU,=k-j=1

@ =—atan 2(ij =-180°

10
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Torsion angle for system with four points

Program: torsion_angle.py

Abstract

Program to calculate torsion angle in degrees for a system with four points (P1,P2,P3,P4).
The torsion angle is between two planes, the first defined by the points P1, P2 and P3 and
the second plane by the points P2, P3 e P4. The results is shown on screen.
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In the main program we call the following functions: initial vectors(),
calc_q_vectors(pl,p2,p3,p4), calc_cross_vectors(ql,q2,g93),
calc_normals(gl _x 92,92 _x_Qg3), calc_unit_orthogonal vectors(n2,92), and
calc_torsion_angle(n1,ul,u2,u3).

def main():
# Call initial vectors() functions
pl,p2,p3,p4 = initial vectors()
# Call calc g vectors(pl,p2,p3,p4) function
gl,qg2,93 = calc q vectors (pl,p2,p3,p4)
# Call calc cross vectors(gl,g2,q3) function
gl x g2, g2 x g3 = calc cross vectors(ql,qg2,g3)
# Call calc normals (gl x 92,92 x g3) function
nl, n2 = calc normals (gl x g2,g2 x g3)
# Call calc unit orthogonal vectors (n2,q2) function
ul,u2,u3 = calc unit orthogonal vectors(n2,gZz)
# Call calc torsion angle (ul,u2,u3) function
calc torsion angle (nl,ul,u2,u3)

. 12
main ()
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Function: initial_vector()

In this function we define the coordinates for four points and return them. We use
NumPy arrays for the coordinates.

def initial vectors():
"""Function to set up initial vectors"""

import numpy as np

# Set initial values for arrays
pl = np.zeros(3)
p2 = np.zeros(3)
p3 = np.zeros(3)

p4 = np.zeros (3)

# Set initial coordinates (http://www.stem2.org/je/proteina.pdf)

pl[:] = [8.326, 10.351, 0.000]
p2[:] = [9.000, 9.000, 0.000]
p3[:] = [10.325, 9.000, 0.000]
p4[:] = [11.09¢6, 7.766, 0.000]

return pl,p2,p3,p4 =
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This function calculates g vectors and returns them. We use the .subtract from NumPy
library.

def calc g vectors (pl,p2,p3,p4):
"""Function to calculate g vectors'"""

import numpy as np

# Calculate coordinates for vectors gql, g2 and g3

ql np.subtract (p2,pl) # b - a

np.subtract (p3,p2) # ¢ - b

q2
g3 = np.subtract (p4,p3) # d - ¢

return qgl,q2,q3 14
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Here we calculate the cross vectors, using .cross from NumPYy library, as shown below.

def calc cross vectors(ql,q2,93):

""r"function to calculate cross vectors"""

import numpy as np

# Calculate cross vectors
gl x g2 = np.cross(gl,qgZ2)
g2 x g3 = np.cross(g2,93)

return gl x g2, g2 x g3
15
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Now we calculate normal vectors to planes, using .dot and .sgrt from NumPy library, as
shown below.

def calc normal (gl x g2,92 X g3):
"""Function to calculate normal vectors to planes'"""

import numpy as np

# Calculate normal vectors
nl = gl x g2/np.sqrt(np.dot (gl x g2,91 x q2))
n2 = g2 x g3/np.sqrt(np.dot (g2 x g3,92 x q3))

return nl,nZ2
16
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Function: calc_unit_orthogonal_vectors()

This function calculates unit orthogonal vectors, using .cross, .dot, and .sqrt from
NumPYy library, as shown below.

def calc unit orthogonal vectors (n2,gZ2):

"""Function to calculate unit orthogonal vectors"'""

import numpy as np

# Calculate unit vectors
ul = n2

u3

g2/ (np.sgrt (np.dot (g2,q92)))

u?2 = np.cross (u3,ul)

return ul,u’2,u3
17
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Finally, we calculate the torsion angle using atan2 from math library and the .degree
and .dot from NumPYy library, as shown below.

def calc torsion angle(nl,ul,u2,u3):
"""Function to calculate torsion angle'""
import numpy as np

import math

# Calculate cosine and sine

cos theta = np.dot(nl,ul)

sin theta np.dot (nl,uZ2)

# Calculate theta

theta = -math.atanZ2(sin theta,cos theta)

# it is different from atan2 from fortran math.atan2 (y,x)

theta deg = np.degrees (theta)

# Show results

print ("theta (rad) ",theta)

18

print ("theta (deg) ",theta deg)
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To run torsion_angle.py, type python torsion_angle.py, as shown below.

C:\Users\Walter>python torsion angle.py
theta (rad) = -3.141592653589793

theta (deg) = -180.0

C:\Users\Walter>

19
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This text was produced in a DELL Inspiron notebook with 6GB of memory, a 750 GB
hard disk, and an Intel® Core® i5-3337U CPU @ 1.80 GHz running Windows 8.1. Text
and layout were generated using PowerPoint 2013 and graphical figures were
generated by Visual Molecular Dynamics
(VMD)(http://www.ks.uiuc.edu/Research/vmd/). This tutorial uses Arial font.
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