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A torsion angle is defined by four points,

as shown in the figure here. Points P1, P2,

and P3 define one plane, points P2, P3,

and P4 define a second plane. The angle

between these two planes is referred to as

torsion angle .

 P1

P2
P3

P4

Torsion Angle
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To determine the torsion angle , we need

to consider three vectors connecting

points P1, P2, P3 , and P4 , named here as

q1, q2, and q3. Boldface is used to

indicate vectors. The cross product of q1

and q2 (q1xq2) defines a vector

perpendicular to the plane P1P2P3, and the

cross product q2xq3 defines a vector

normal to the plane P2P3P4 . In the figure,

we clearly see that the angle between

q1xq2 and q2xq3 is also . Therefore, we

just have to determine the angle between

n1 and n2, which are the unit vectors along

q1xq2 and q2xq3, respectively. Below we

have equations used to calculate the unit

vectors n1 and n2,
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Boldface is used to indicate vectors.
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In addition, we define unit orthogonal

vectors u1, u2, and u3 as follows:

the cosine and sine are given by:

Then, torsion angle  is as follows,
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You have to use atan2 function, which is

available in Python, to determine the

torsion angle.
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In summary, to calculate the torsion angle

 for a system with four points, we have to

follow the steps shown below.

1) Calculate vectors q1, q2 and q3 as

follows:

where i, j, and k are unit vectors along x,y,

and z axis, respectively. We consider an

orthonormal coordinate system.

2) Calculate cross vectors q1 x q2 and q2 x

q3.

5

q1 x q2

q2 x q3

q2 = (x3 – x2 )i + (y3 – y2 )j + (z3 – z2 )k

q1 = (x2 – x1 )i + (y2 – y1 )j + (z2 – z1 )k

q3 = (x4 – x3 )i + (y4 – y3 )j + (z4 – z3 )k
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3) Calculate normal vector to planes, as

follows:

4) Calculate unit orthogonal vectors

5) Calculate torsion angle :
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Example. Calculate the torsion angle 

between the planes defined by the points

P1, P2, P3 e P4, using the coordinates

indicated below.

We could think that each coordinate is an

atomic coordinate, as the ones available

in a PDB file.

7

kjip1 0.000   10.351  8.326 

 0.000    9.000    9.000 kjip2 

kjip3 0.000   9.000   10.325 

kjip4 0.000   7.766   11.096 

P1

q2

q3

8.326  10.351   0.000

9.000   9.000   0.000

10.325   9.000   0.000

11.096   7.766   0.000

P2

P3

P4

q1

Torsion Angle (Example)
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Answer

Step 1: Here we calculate the vectors q1,

q2, and q3.

8

q2 = (x3 – x2 )i + (y3 – y2 )j + (z3 – z2 )k = (1.351)i + (0 )j = 1.351i

q1 = (x2 – x1 )i + (y2 – y1 )j + (z2 – z1 )k = (0.674)i + (-1.351)j = 0.674i – 1.351j

q3 = (x4 – x3 )i + (y4 – y3 )j + (z4 – z3 )k = (0,.771)i + (-1.234)j = 0.771i -1.234j

Torsion Angle (Example)
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Step 2: Now we calculate the cross

vectors, as follows:

Cross vectors:

i x i = 0 j x j = 0 k x k = 0

i x j = k j x k = i k x i = j

i x k = - j j x i = -k k x j = -i

9

q1 x q2 = (0.674i – 1.351j ) x (1.351i) = 1.8252k

q2 x q3 = (1.351i) x (0.771i -1.234j) = - 1.6671k

Step 3: Here we calculate the normal

vectors:
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Step 4: Calculate unit vectors:
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Abstract

Program to calculate torsion angle in degrees for a system with four points (P1,P2,P3,P4).

The torsion angle is between two planes, the first defined by the points P1, P2 and P3 and

the second plane by the points P2, P3 e P4. The results is shown on screen.

Torsion angle for system with four points

Program: torsion_angle.py

11

Program: torsion_angle.py
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def main():

# Call initial_vectors() functions

p1,p2,p3,p4 = initial_vectors()

# Call calc_q_vectors(p1,p2,p3,p4) function

q1,q2,q3 = calc_q_vectors(p1,p2,p3,p4)

# Call calc_cross_vectors(q1,q2,q3) function

q1_x_q2, q2_x_q3 = calc_cross_vectors(q1,q2,q3)

# Call calc_normals(q1_x_q2,q2_x_q3) function

n1, n2 = calc_normals(q1_x_q2,q2_x_q3)

# Call calc_unit_orthogonal_vectors(n2,q2) function

u1,u2,u3 = calc_unit_orthogonal_vectors(n2,q2)

# Call calc_torsion_angle(u1,u2,u3) function

calc_torsion_angle(n1,u1,u2,u3) 

main()
12

In the main program we call the following functions: initial_vectors(),

calc_q_vectors(p1,p2,p3,p4), calc_cross_vectors(q1,q2,q3),

calc_normals(q1_x_q2,q2_x_q3), calc_unit_orthogonal_vectors(n2,q2), and

calc_torsion_angle(n1,u1,u2,u3).

Program: torsion_angle.py (main program)
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def initial_vectors():

"""Function to set up initial vectors"""

import numpy as np

# Set initial values for arrays

p1 = np.zeros(3)

p2 = np.zeros(3)

p3 = np.zeros(3)

p4 = np.zeros(3)

# Set initial coordinates (http://www.stem2.org/je/proteina.pdf)

p1[:] = [8.326,  10.351,   0.000]

p2[:] = [9.000,   9.000,   0.000]

p3[:] = [10.325,   9.000,   0.000]

p4[:] = [11.096,   7.766,   0.000] 

return p1,p2,p3,p4
13

In this function we define the coordinates for four points and return them. We use

NumPy arrays for the coordinates.

Function: initial_vector()
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def calc_q_vectors(p1,p2,p3,p4):

"""Function to calculate q vectors"""

import numpy as np

# Calculate coordinates for vectors q1, q2 and q3

q1 = np.subtract(p2,p1) # b - a

q2 = np.subtract(p3,p2) # c - b

q3 = np.subtract(p4,p3) # d - c

return q1,q2,q3 14

This function calculates q vectors and returns them. We use the .subtract from NumPy

library.

Function: calc_q_vectors()

www.python.org



def calc_cross_vectors(q1,q2,q3):

"""Function to calculate cross vectors"""    

import numpy as np

# Calculate cross vectors

q1_x_q2 = np.cross(q1,q2)

q2_x_q3 = np.cross(q2,q3)

return q1_x_q2, q2_x_q3 

15

Here we calculate the cross vectors, using .cross from NumPy library, as shown below.

Function: calc_cross_vectors()
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def calc_normal(q1_x_q2,q2_x_q3):  

"""Function to calculate normal vectors to planes"""

import numpy as np

# Calculate normal vectors

n1 = q1_x_q2/np.sqrt(np.dot(q1_x_q2,q1_x_q2))

n2 = q2_x_q3/np.sqrt(np.dot(q2_x_q3,q2_x_q3))

return n1,n2

16

Now we calculate normal vectors to planes, using .dot and .sqrt from NumPy library, as

shown below.

Function: calc_normal()
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def calc_unit_orthogonal_vectors(n2,q2):

"""Function to calculate unit orthogonal vectors"""

import numpy as np

# Calculate unit vectors

u1 = n2

u3 = q2/(np.sqrt(np.dot(q2,q2)))

u2 = np.cross(u3,u1)

return u1,u2,u3

17

This function calculates unit orthogonal vectors, using .cross, .dot, and .sqrt from

NumPy library, as shown below.

Function: calc_unit_orthogonal_vectors()
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def calc_torsion_angle(n1,u1,u2,u3):

"""Function to calculate torsion angle"""

import numpy as np

import math

# Calculate cosine and sine

cos_theta = np.dot(n1,u1)

sin_theta = np.dot(n1,u2)

# Calculate theta

theta = -math.atan2(sin_theta,cos_theta)   

# it is different from atan2 from fortran math.atan2(y,x)

theta_deg = np.degrees(theta)

# Show results

print("theta (rad) = ",theta)

print("theta (deg) = ",theta_deg)
18

Finally, we calculate the torsion angle using atan2 from math library and the .degree

and .dot from NumPy library, as shown below.

Function: calc_torsion_angle()
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To run torsion_angle.py, type python torsion_angle.py, as shown below.

C:\Users\Walter>python torsion_angle.py

theta (rad) =  -3.141592653589793

theta (deg) =  -180.0

C:\Users\Walter>

Running torsion_angle.py
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This text was produced in a DELL Inspiron notebook with 6GB of memory, a 750 GB

hard disk, and an Intel® Core® i5-3337U CPU @ 1.80 GHz running Windows 8.1. Text

and layout were generated using PowerPoint 2013 and graphical figures were

generated by Visual Molecular Dynamics

(VMD)(http://www.ks.uiuc.edu/Research/vmd/). This tutorial uses Arial font.
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