Torsion Angle in Python

By Prof. Walter F. de Azevedo Jr.

@, python

www.python.org

© 2016 Dr. Walter F. de Azevedo Jr.

www.pytkEn.org 4

A torsion angle is defined by four points,
as shown in the figure here. Points P,, P,,
and P; define one plane, points P,, Pg,
and P, define a second plane. The angle

between these two planes is referred to as
torsion angle 6.

@ pythor
g www.python.org

To determine the torsion angle 6, we need
to consider three vectors connecting
points P,, P,, P;, and P, , named here as
d,» g4, and q;. Boldface is used to
indicate vectors. The cross product of q,
and g, (gq.xq,) defines a vector
perpendicular to the plane P,P,P,, and the
cross product (,xq, defines a vector
normal to the plane P,P;P, . In the figure,
we clearly see that the angle between
g,Xg, and g,xq; is also 6. Therefore, we
just have to determine the angle between
n, and n,, which are the unit vectors along
q.Xq, and g,xq; respectively. Below we
have equations used to calculate the unit
vectors n,; and n,,

n — d, xq, N - g, X0, Boldface is used to indicate vectors.
=2 — 127 M3

‘qlqu‘ i |Q2Xq3|

Torsion Angle

@, python

www.python.org

In addition, we define unit orthogonal
vectors u,, U,, and u; as follows:

u, =n,
o P

U, = 22

3 9,

U, =U, xU,

the cosine and sine are given by:

cos—-60=n,u,
sen—6=n,.u,

Then, torsion angle 0 is as follows,

n .
0:—atan2(L ulj
n,-u,

You have to use atan2 function, which is
available in Python, to determine the
torsion angle.

Torsion Angle

@, python

www.python.org

In summary, to calculate the torsion angle

0 for a system with four points, we have to

follow the steps shown below.

1) Calculate vectors q,, q, and q; as
follows:

Ay = (Xo =X)l + (Yo —y1)] +(z2,— 21)k

0, = (X3 = X))l + (Y3 —VY,)] + (23— 2,)k

Oz = (X4 = X3)I + (Y4 —Y3)] + (2, —Z3)K

where i, |, and k are unit vectors along x,y,
and z axis, respectively. We consider an
orthonormal coordinate system.

2) Calculate cross vectors g, X g, and g, X

A d; X0,
d, X Q3

@ pythor
www.python.org

3) Calculate normal vector to planes, as
follows:

d, xd, g, %0,

n, =——% n,=—%2-%

g, xq,] * g, xqy

4) Calculate unit orthogonal vectors

u, =n,
d,
u, = —%
© oy
U, =U,xU,

5) Calculate torsion angle 6:

cos-6=n,.u, 0 — _atano MY
sen—6=n,.u, n,-u,)

@ pythor
www.python.org

Example. Calculate the torsion angle 6
between the planes defined by the points
P,, P,, P; e P,, using the coordinates

) : 8.326 10.351 0.000
indicated below.

10.325 9.000 0.000

p, =8.326i +10.351j+ 0.000k
p, =9.000i + 9.000j + 0.000k
P, =10.3251 + 9.000j + 0.000k
p, =11.0961 +7.766] +0.000k

9.000 9.000 0.000

11.096 7.766 0.000

We could think that each coordinate is an
atomic coordinate, as the ones available
in a PDB file.

@ python-
_ __ WWW.pthEn.org 4

Answer
Step 1: Here we calculate the vectors q;,

g,, and qs.

Gy = (Xo = X)i + (V= ¥4)j + (2, — 2,)k = (0.674)i + (-1.351)j = 0.674i — 1.351;]

Oy = (Xg = X)) + (Y3 =¥)) +(Z5—2;)k = (1.351)1 + (0)) = 1.3511

Oz = (X4 = X3 + (Y4 —VY3)] + (2, —253)k =(0,.771)i + (-1.234)) = 0.7711 -1.234]

@ pythor
www.python.org

Step 2: Now we calculate the cross
vectors, as follows:

g, X g, =(0.674i — 1.351j) x (1.351i) = 1.8252k

g, X 05 = (1.351i) X (0.771i -1.234j) = - 1.6671k

Step 3. Here we calculate the normal
vectors:

q,xq, _18252k _,

n, = = Cross vectors:
g, xq,| 1.8252 O L0 kxk=0
ixj=k jxk=i kxi=]j
n _C|2><q3_-1.6671k__k ixk=-j jxi=-k kxj=-i
2_ —

9,xq,] 16671

www.python.org 4

Step 4: Calculate unit vectors:

U, =N, = -k 8.326 10.351 0.000
g = 9 ~ 1.351i _ P,
’ ‘qz‘ 1.351 10.325 9.000 0.000
: : P
U, =UyxU, =ix(-K) =] 9.000 9.000 0.000 3

Step 5.: Finally, the torsion angle

11.096 7.766 0.000
cos-0=n,u, =k-(-k)=-1
sen—-6d=n,.uU,=k-j=1

@ =—atan 2(ij =-180°

10

P————— @, python”

www.python.org

Torsion angle for system with four points

Program: torsion_angle.py

Abstract

Program to calculate torsion angle in degrees for a system with four points (P1,P2,P3,P4).
The torsion angle is between two planes, the first defined by the points P1, P2 and P3 and
the second plane by the points P2, P3 e P4. The results is shown on screen.

11

Program: torsion_angle.py (main program) ﬁ pgthon

www.python.org

In the main program we call the following functions: initial vectors(),
calc_q_vectors(pl,p2,p3,p4), calc_cross_vectors(ql,q2,g93),
calc_normals(gl _x 92,92 _x_Qg3), calc_unit_orthogonal vectors(n2,92), and
calc_torsion_angle(n1,ul,u2,u3).

def main():
Call initial vectors() functions
pl,p2,p3,p4 = initial vectors()
Call calc g vectors(pl,p2,p3,p4) function
gl,qg2,93 = calc q vectors (pl,p2,p3,p4)
Call calc cross vectors(gl,g2,q3) function
gl x g2, g2 x g3 = calc cross vectors(ql,qg2,g3)
Call calc normals (gl x 92,92 x g3) function
nl, n2 = calc normals (gl x g2,g2 x g3)
Call calc unit orthogonal vectors (n2,q2) function
ul,u2,u3 = calc unit orthogonal vectors(n2,gZz)
Call calc torsion angle (ul,u2,u3) function
calc torsion angle (nl,ul,u2,u3)

. 12
main ()

@, python

www.python.org

Function: initial_vector()

In this function we define the coordinates for four points and return them. We use
NumPy arrays for the coordinates.

def initial vectors():
"""Function to set up initial vectors"""

import numpy as np

Set initial values for arrays
pl = np.zeros(3)
p2 = np.zeros(3)
p3 = np.zeros(3)

p4 = np.zeros (3)

Set initial coordinates (http://www.stem2.org/je/proteina.pdf)

pl[:] = [8.326, 10.351, 0.000]
p2[:] = [9.000, 9.000, 0.000]
p3[:] = [10.325, 9.000, 0.000]
p4[:] = [11.09¢6, 7.766, 0.000]

return pl,p2,p3,p4 =

__ WWW.pytkEn.org

This function calculates g vectors and returns them. We use the .subtract from NumPy
library.

def calc g vectors (pl,p2,p3,p4):
"""Function to calculate g vectors'"""

import numpy as np

Calculate coordinates for vectors gql, g2 and g3

ql np.subtract (p2,pl) # b - a

np.subtract (p3,p2) # ¢ - b

q2
g3 = np.subtract (p4,p3) # d - ¢

return qgl,q2,q3 14

TH
® pher
_ - www.pytkﬁn.org

Here we calculate the cross vectors, using .cross from NumPYy library, as shown below.

def calc cross vectors(ql,q2,93):

""r"function to calculate cross vectors"""

import numpy as np

Calculate cross vectors
gl x g2 = np.cross(gl,qgZ2)
g2 x g3 = np.cross(g2,93)

return gl x g2, g2 x g3
15

__ WWW.pytkEn.org

Now we calculate normal vectors to planes, using .dot and .sgrt from NumPy library, as
shown below.

def calc normal (gl x g2,92 X g3):
"""Function to calculate normal vectors to planes'"""

import numpy as np

Calculate normal vectors
nl = gl x g2/np.sqrt(np.dot (gl x g2,91 x q2))
n2 = g2 x g3/np.sqrt(np.dot (g2 x g3,92 x q3))

return nl,nZ2
16

@, python”

www.python.org

Function: calc_unit_orthogonal_vectors()

This function calculates unit orthogonal vectors, using .cross, .dot, and .sqrt from
NumPYy library, as shown below.

def calc unit orthogonal vectors (n2,gZ2):

"""Function to calculate unit orthogonal vectors"'""

import numpy as np

Calculate unit vectors
ul = n2

u3

g2/ (np.sgrt (np.dot (g2,q92)))

u?2 = np.cross (u3,ul)

return ul,u’2,u3
17

Function: calc_torsion_angle() ﬁ pgthon

www.python.org

Finally, we calculate the torsion angle using atan2 from math library and the .degree
and .dot from NumPYy library, as shown below.

def calc torsion angle(nl,ul,u2,u3):
"""Function to calculate torsion angle'""
import numpy as np

import math

Calculate cosine and sine

cos theta = np.dot(nl,ul)

sin theta np.dot (nl,uZ2)

Calculate theta

theta = -math.atanZ2(sin theta,cos theta)

it is different from atan2 from fortran math.atan2 (y,x)

theta deg = np.degrees (theta)

Show results

print ("theta (rad) ",theta)

18

print ("theta (deg) ",theta deg)

o puher
_ _ o wwwpython org

To run torsion_angle.py, type python torsion_angle.py, as shown below.

C:\Users\Walter>python torsion angle.py
theta (rad) = -3.141592653589793

theta (deg) = -180.0

C:\Users\Walter>

19

References ﬁ pg’[h()ﬂ

www.python.org

-BRESSERT, Eli. SciPy and NumPy. Sebastopol: O’Reilly Media, Inc., 2013. 56 p.
-DAWSON, Michael. Python Programming, for the absolute beginner. 3ed. Boston: Course Technology, 2010. 455 p.

-HETLAND, Magnus Lie. Python Algorithms. Mastering Basic Algorithms in the Python Language. Nova York: Springer
Science+Business Media LLC, 2010. 316 p.

-IDRIS, Ivan. NumPy 1.5. An action-packed guide dor the easy-to-use, high performance, Python based free open source NumPy
mathematical library using real-world examples. Beginner’s Guide. Birmingham: Packt Publishing Ltd., 2011. 212 p.

-KIUSALAAS, Jaan. Numerical Methods in Engineering with Python. 2ed. Nova York: Cambridge University Press, 2010. 422 p.

-LANDAU, Rubin H. A First Course in Scientific Computing: Symbolic, Graphic, and Numeric Modeling Using Maple, Java,
Mathematica, and Fortran90. Princeton: Princeton University Press, 2005. 481p.

-LANDAU, Rubin H., PAEZ, Manuel José, BORDEIANU, Cristian C. A Survey of Computational Physics. Introductory
Computational Physics. Princeton: Princeton University Press, 2008. 658 p.

-LUTZ, Mark. Programming Python. 4ed. Sebastopol: O’Reilly Media, Inc., 2010. 1584 p.
-MODEL, Mitchell L. Bioinformatics Programming Using Python. Sebastopol: O’Reilly Media, Inc., 2011. 1584 p.

-TOSI, Sandro. Matplotlib for Python Developers. Birmingham: Packt Publishing Ltd., 2009. 293 p.

Last update February, 4t 2016.

20

puthon
www.python.org

This text was produced in a DELL Inspiron notebook with 6GB of memory, a 750 GB
hard disk, and an Intel® Core® i5-3337U CPU @ 1.80 GHz running Windows 8.1. Text
and layout were generated using PowerPoint 2013 and graphical figures were
generated by Visual Molecular Dynamics
(VMD)(http://www.ks.uiuc.edu/Research/vmd/). This tutorial uses Arial font.

13

@, python

www.python.org

3

| graduated in Physics (BSc in Physics) at University of Sao Paulo (USP) in 1990. |
completed a Master Degree in Applied Physics also at USP (1992), working under
supervision of Prof. Yvonne P. Mascarenhas, the founder of crystallography in Brazil.

My dissertation was about X-ray crystallography applied to organometallics compounds
(De Azevedo Jr. et al.,1995) ().

During my PhD | worked under supervision of Prof. Sung-Hou Kim (University of
California, Berkeley. Department of Chemistry), on a split PhD program with a

fellowship from Brazilian Research Council (CNPQ)(1993-1996). My PhD was about the
crystallographic structure of CDK2 (Cyclin-Depedent Kinase 2) (De Azevedo Jr. et al.,
1996)(http://www.ncbi.nlm.nih.gov/pubmed/9552391). In 1996, | returned to Brazil. In April 1997, | finished my
PhD and moved to Sao Jose do Rio Preto (SP, Brazil) (UNESP) and worked there from 1997 to 2005. In 1997, |
started the Laboratory of Biomolecular Systems- Department of Physics-UNESP - Sdo Paulo State University. In
2005, | moved to Porto Alegre/RS (Brazil), where | am now. My current position is coordinator of the Laboratory
of Computational Systems Biology at Pontifical Catholic University of Rio Grande do Sul (PUCRS). My research
interests are focused on application of computer simulations to analyze protein-ligand interactions. I'm also
interested in the development of biological inspired computing and application of these algorithms to molecular
docking simulations, protein-ligand interactions and other scientific and technological problems. | published over
160 scientific papers about protein structures and computer simulation methods applied to the study of biological
systems (H-index: 33). These publications have over 3700 citations. | am regional editor for South and Central
America for Current Drug Target (ISSN: 1873-5592 (Online), ISSN: 1389-4501 (Print)
)(), academic editor for Current
Bioinformatics () and guest editor
for Current Medicinal Chemistry.

More information at www.azevedolab.net .

14

http://dx.doi.org/doi:10.1107/S0108270194009868
http://benthamscience.com/journal/editorial-board.php?journalID=cdt#top
http://benthamscience.com/journals/current-bioinformatics/editorial-board/#top
https://scholar.google.com.br/citations?hl=pt-BR&user=HWwJXJUAAAAJ&view_op=list_works&sortby=pubdate
https://www.facebook.com/Prof.Walter

