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Although taxanes such as paclitaxel and docetaxel are the two most important clinically available
anticancer drugs for the treatment of various cancers (including colon cancer), the success of these two
drugs has been tempered by the development of various unbearable side effects as well as multi-drug
resistance. Therefore, it is essential to search new taxane analogues with improved anticancer activity
and fewer side effects to gain the maximum benefits for colon cancer patients. In this paper, four series of
taxane derivatives were used to correlate their inhibitory activities against colon cancers mainly with the
hydrophobic and steric descriptors of their substituents in order to gain a better understanding of their
chemical–biological interactions. QSAR results from this paper have suggested that the steric and
hydrophobic parameters of the substituents are the two most important determinants for the activities
of taxane analogues (under consideration) against colon cancers, with a major contribution coming from
the molar refractivity of the substituents. Statistical diagnostics, internal validation, and external vali-
dation tests have validated all the QSAR models.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Colorectal (colon and rectum) cancer is the third most common
cancer in both men and women. An estimate from the American
Cancer Society has insinuated that about 108,070 and 40,740,
respectively, the new cases of colon and rectal cancers, and about
49,960 deaths from these cancers were expected to occur in the
United States during the year of 2008, accounting for about 11% of all
the cancer-related deaths [1]. Recent studies have suggested that
dominant mutations in the tumor suppressor gene adenomatous
polyposis coli (APC) derive tetraploid formation causing the failures
in cytokinesis before the earliest steps associated with colorectal
cancer progression [2]. These mutations generally cause the loss of
C-terminal functions of the APC protein – possibly due to the
involvement of microtubule binding, cell polarity, chromosome
segregation, and deletion of the SAMP (serine, alanine, methionine,
and proline) repeats that are the most important factors for binding
to axin and formation of the b-catenin phosphorylation complex.
The APC proteins are usually stable and retain some activity in
b-catenin binding [3]. The loss of APC immediately induces chro-
mosomal instability as a result of combined mitotic and apoptotic
defects [4]. Deregulation of b-catenin signaling is an important
consequence of the APC loss, which was strongly supported by the
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genetic and molecular data. However, APC has functions indepen-
dent of b-catenin regulation, e.g. in microtubule plus-end binding,
stabilization, and efficient spindle checkpoint activation [5,6].
Although the genetic defect in familial adenomatous polyposis
affects the rate of tumor initiation by targeting the gatekeeper
function of the APC gene, the defect in hereditary nonpolyposis
colorectal cancer largely affects tumor progression by targeting the
genome guardian function of DNA mismatch repair [7].

Experimental and epidemiological evidences have illustrated
that the diet and nutrition are the two key factors in modulating
colon cancer attack and progression [8]. New Western diet (NWD)
is one of the major dietary risk factors for the human colon
cancer. Colonic tumors can be prevented by elevating dietary
calcium and vitamin D3 to the upper level limit as consumed by
humans, but tumorigenesis cannot be altered by similarly
increasing folate, choline, methionine, or fiber; each of these are
also present at the lower levels in the NWD and are associated
with the high risk for colon cancer [9]. In a very recent study, it
had been demonstrated that the low folate and vitamin B6 intake
was associated with an increased risk of p53-overexpressing colon
cancers but not wild-type tumors [10]. Selenium is proved to be
an important micronutrient engaged in the protection of colonic
cells against a wide range of external and internal stressors. It
inhibits actively the growth of malignant colonic cells as well as to
induce their demise. Thus, the use of selected selenium
compounds may be suggested in conjunction with established
antineoplastic drugs [11].
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Strong evidence has been generated from the cell culture and
animal studies that the tea has a protective effect against carcino-
genesis. Tea is an aqueous infusion from the dried leaves of Camellia
sinensis. It is one of the most widely used beverages throughout the
world. It possesses various beneficial properties that may affect
carcinogen metabolism, free radical scavenging, or the formation of
DNA adducts [12,13]. Epidemiological and laboratory studies have
identified epigallocatechin gallate (EGCG), in green tea polyphenols,
as one of the most potent chemopreventive agents that can induce
apoptosis, suppress the formation and growth of human cancers
including colorectal cancer [14]. The treatment of colon cancers by
EGCG has resulted in a strong activation of AMP-activated protein
kinase (AMPK) and an inhibition of COX-2 expression. Furthermore,
it has also been found that the reactive oxygen species (ROS) is an
upstream signal of AMPK, and the combined treatment of EGCG with
other chemotherapeutic agents such as 5-Fluorouracil and Etopo-
side, exert a novel therapeutic effect on chemo-resistant colon
cancers [15]. In the past 15 years, 5-Fluorouracil and leucovorin have
been considered as the standard drugs for the treatment of colorectal
cancer that have now been replaced by the combination chemo-
therapy, at least in the stage III disease. The treatment of stage II
disease is still somewhat less established [16]. Although oxaliplatin-
based chemotherapy is now considered as the standard care in node-
positive colon cancer; it remains controversial for the patients with
node-negative disease. It is interesting to note here that fluoropyr-
imidines play an increasing role in the management of colorectal
cancer and can be considered as an alternative to 5-fluorouracil.
Despite the progress achieved with the introduction of new cytotoxic
agents, recurrence rates for the colon cancer patients with respect to
stage II/III disease remain >20% [17].

Taxanes are considered to be the most powerful group of
compounds among the current novel chemotherapeutic drugs.
Taxane analogues such as paclitaxel (1) and docetaxel (2) are
already in use for the treatment of various types of cancers;
including breast, colon, lung, ovarian, and prostate [18–21]. These
two drugs bind to the b-subunit of tubulin and promote tubulin
polymerization, leading to the inhibition of microtubule dynamics,
cell cycle arrest, and ultimately cell death by apoptosis [22–25].
Although these two drugs (1 and 2) have made great milestones in
the treatment of various cancers, clinical reports have revealed that
their use often results in a number of undesirable side effects and
multi-drug resistance (MDR). These side effects, along with the
onset of MDR, clearly suggest the necessity of developing new
taxane derivatives with much improved anticancer activity, fewer
side effects, and superior pharmacological properties to maximize
the induced benefits for colon cancer patients. This may also reduce
the large economic and disease burden worldwide. The quantita-
tive structure–activity relationship (QSAR) paradigm may provide
helpful suggestions in the design and development of novel taxane
analogues that are expected to achieve the improvements in their
anticancer activity against colon cancer, as well as in their toxicity
profile, and pharmacology.
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In the present study, we developed four QSAR models on four
different sets of taxane analogues (3–6) with respect to their
anticancer activities against colon cancers. The QSAR methodology
is a powerful mathematical tool that has been used successfully
since past four decades in understanding many aspects of chem-
ical–biological interactions in drug-design process, pesticide
research, and in the areas of toxicology [26–31]. This method can
shed light on mechanisms of action of various ligands with
enzymes, membranes, organelles, cells, virus, bacteria, and human
[32–41]. It has also been frequently utilized for the evaluation of
absorption, distribution, metabolism, and excretion phenomena in
many organisms and whole animal studies [40,41]. The QSAR
method utilizes computational-based and extra-thermodynami-
cally derived descriptors to correlate biological activity in isolated
receptors, in cellular systems, and in vivo. There are mainly four
standard molecular descriptors such as electronic, hydrophobic,
steric, and topological indices, routinely used in the QSAR analysis.
QSAR models can stand alone to augment other computational
approaches. It can be examined in tandem with equations of
a similar mechanistic genre to establish its authenticity and reli-
ability [42].

2. Experimental

All the biological data were taken from the literature and the
reference has been cited with their respective QSAR. IC50 is the
molar concentration of a compound that inhibits 50% of growth of
the cancer cell population; log 1/IC50 is the subsequent dependent
variable that defines the biological parameter for the QSAR model.
With the aid of the C-QSAR program, multiregression analyses were
applied to derive appropriate QSAR models using autoloaded
descriptors [43]. In order to avoid the collinearity problems, the
selection of descriptors was carried out with the aid of permutation
and correlation matrices among the descriptors. Details about the
use of C-QSAR program, in the development of QSAR models, have
already been discussed in refs. [44,45].

2.1. Molecular descriptors

Clog P is the calculated partition coefficient of a compound in 1-
octanol/water system and is a measure of its hydrophobicity,
whereas p is the hydrophobic parameter for the substituent only.
Similarly, CMR is the calculated molar refractivity for the whole
molecule, whereas MR is the molar refractivity for the substituent
only. MR has been scaled at 0.1 to make it equiscalar with p. CMR is
calculated by using the Lorentz–Lorenz equation: [(n2�1)/
(n2 þ 2)](MW/d), where n is the refractive index, MW is the
molecular weight, and d is the density of the substance. B5 and L are
the Verloop’s sterimol parameters for substituents, where B5 is
a measure of the maximum width of the substituent and L is the
substituent length [46]. The indicator variable I is assigned the value
of 1 and 0 for the presence and absence, respectively, of the certain
structural features with unusual effects that cannot be parameter-
ized and has been explained wherever it comes to play.

2.2. Statistical parameters

In all the QSAR models, n is the number of data points, r2 is the
square of the correlation coefficient, q2 is the cross-validated r2, s is
the standard deviation, and the data within the parentheses
represents the 95% confidence intervals. The leave-one-out (LOO)
cross-validated r2 (q2 or LOO–q2) was obtained by using the LOO
procedure of Cramer III et al. [47]. Similarly, the leave-five-out (LFO)
cross-validated r2 (qf

2 or LFO–q2) was obtained by using the similar
LFO procedure. Q is the quality factor, for which Q ¼ r/s (where, r is



Table 1
Biological (IC50, mol L�1) [56], physicochemical, and structural parameters of
paclitaxel analogues (3) used to derive QSAR (Eq. (1)).

No. X log 1/IC50 (Eq. (1)) pX MRX ICYALK

Obsd. Pred. D

1 CH3 8.62 9.06 �0.44 0.70 0.46 0
2 C6H5 6.39 6.65 �0.26 1.91 2.51 0
3 4-F-C6H4 6.10 6.81 �0.71 2.05 2.53 0
4 CH2F 8.15 8.60 �0.45 0.37 0.48 0
5 CCl3 8.40 8.68 �0.28 2.58 1.94 0
6 C2H5 8.70 8.86 �0.16 1.23 0.93 0
7 CH]CH2 8.22 8.26 �0.04 0.85 0.98 0
8 (CH2)2CH3 8.96 8.65 0.31 1.76 1.39 0
9 CH(CH3)2 8.30 8.36 �0.06 1.54 1.39 0
10 C(CH3) ¼ CH2 8.35 7.76 0.59 1.16 1.44 0
11 trans-CH ¼ CHCH3 8.64 8.05 0.59 1.38 1.44 0
12 Cy-C3H5 9.00 9.18 �0.18 1.28 1.25 1
13 (CH2)3CH3 8.70 8.45 0.25 2.28 1.86 0
14 Cy-C4H7 8.82 8.79 0.03 1.61 1.68 1
15 (CH2)4CH3 8.22 8.24 �0.02 2.81 2.32 0
16 Cy-C5H9 8.70 8.62 0.08 2.17 2.14 1
17 OCH3 8.70 8.74 �0.04 0.68 0.62 0
18 OCH2CH3 9.00 8.54 0.46 1.21 1.08 0
19 O(CH2)2CH3 8.59 8.33 0.26 1.74 1.54 0
20 NH-Cy-C4H7 8.04 7.97 0.07 1.55 2.05 1
21 Imidazole 6.10 5.88 0.22 0.18 1.73 0
22 Aziridine 7.81 8.01 �0.20 0.87 1.12 0
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the correlation coefficient and s is the standard deviation). F is the
Fischer statistics, for which F¼ fr2/[(1�r2)m], where f is the number
of degrees of freedom [f ¼ n – (m þ 1)], n is the number of data
points, and m is the number of variables. The value of F within
parentheses represents the literature F-value at 95% level [48].

2.3. Outliers

Only those compounds, which have unexpected biological
activities and unable to fit in a QSAR model, are considered as
outliers. Although the presence of outliers is mainly due to the
possibility that the molecules may act by different mechanisms or
interact with the receptor in different binding modes, it may also
due to the intrinsic noise associated with both the original data and
methodological aspects involved in the development of QSAR
models [49–51]. Compounds were considered to be outliers on the
basis of their deviation between observed and predicted activities
from the model (observed activity – predicted activity> 2s, where s
is the standard deviation) [52–55].

2.4. Model validation

The QSAR model validation was carried out in three steps such as
statistical diagnostics, internal validation, and external validation.

3. Results and discussion

3.1. QSAR for the inhibition of growth of HCT-116 (human colon
cancer cells) by paclitaxel analogues (3)
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Fig. 1. Plot of observed versus predicted log 1/IC50 (Eq. (1)).
Chen et al. [56] synthesized a series of C-4 modified pacli-
taxel analogues (3) and evaluated for their biological activities in
a cytotoxicity assay against HCT-116 cell line and results were given
in IC50 (nM). Those values of IC50 were converted into log 1/IC50 in
molar concentration and given in Table 1. From the data in Table 1,
QSAR Eq. (1) was developed.

log1=IC50 [ 1:34ð±0:36ÞpX—1:97ð±0:42ÞMRX

D 0:89ð±0:43ÞICYALK D 9:05ð±0:44Þ (1)

n [ 22; r2 [ 0:855; s [ 0:360; q2 [ 0:786;

q2
f [ 0:772;Q [ 2:569; F3;18 [ 35:379ð3:159Þ

IC50 is the molar concentration of paclitaxel analogues (3) that
measures the drug concentration required for the inhibition of
HCT-116 cell proliferation by 50% after 72 h of incubation. pX and
MRX are the calculated hydrophobicity and molar refractivity of the
X substituents, respectively. According to this QSAR model, the
paclitaxel derivative (3) must have a more hydrophobic but smaller
or less polarizable X substituent for improved cytotoxicity. ICYALK is
an indicator variable for the unusual activity of the cycloalkyl
containing X substituents, where ICYALK ¼ 1 for the presence of
cycloalkyl containing X substituent otherwise ICYALK ¼ 0. The
positive coefficient of ICYALK suggests that the presence of cycloalkyl
containing X substituents will be more favorable to the activity. A
comparison between observed and predicted values of log 1/IC50

for paclitaxel analogues (3) used in the development of QSAR Eq.
(1) is shown in Fig. 1.
3.2. QSAR for the inhibition of growth of HT-29 (human colon
carcinoma cells) by taxane analogues (4)
QSAR Eq. (2) is based on the data obtained from Ojima et al.
[21], for which the original data IC50 (nM) was converted into log
1/IC50 in molar concentration and given in Table 2.



Table 2
Biological (IC50, mol L�1) [21] and physicochemical parameters of taxane analogues (4) used to derive QSAR Eq. (2).

No. X Y Z log 1/IC50 (Eq. (2)) MRY pZ Clog P

Obsd. Pred. D

1 H 2-furyl OC(CH3)3 9.22 9.33 �0.11 1.81 2.04 2.68
2 COCH3 2-furyl OC(CH3)3 9.22 9.11 0.11 1.81 2.04 3.39
3 H CH]C(CH3)2 OC(CH3)3 9.30 9.24 0.06 1.92 2.04 3.49
4 COCH3 CH]C(CH3)2 OC(CH3)3 8.62 9.02 �0.40 1.92 2.04 4.20
5 COCH2CH3 CH]C(CH3)2 OC(CH3)3 9.22 8.86 0.36 1.92 2.04 4.73
6 CO(Cy-C3H5) CH]C(CH3)2 OC(CH3)3 9.00 8.84 0.16 1.92 2.04 4.79
7 CON(CH3)2 CH]C(CH3)2 OC(CH3)3 8.92 8.89 0.03 1.92 2.04 4.62
8 COCH ¼ CHCH3 (E) CH]C(CH3)2 OC(CH3)3 8.82 8.72 0.10 1.92 2.04 5.17
9 COOCH3 CH]C(CH3)2 OC(CH3)3 9.15 9.04 0.11 1.92 2.04 4.15
10 H CH ¼ CHCH3 (E) OC(CH3)3 8.72 8.64 0.08 1.45 2.04 3.09
11 COCH3 CH ¼ CHCH3 (E) OC(CH3)3 8.52 8.42 0.10 1.45 2.04 3.81
12 CO(Cy-C3H5) CH]C(CH3)2 C5H11 7.80 7.90 �0.10 1.92 2.24 4.99
13 CON(CH3)2 CH]C(CH3)2 C5H11 8.29 7.95 0.34 1.92 2.24 4.82
14 COCH ¼ CHCH3 (E) CH]C(CH3)2 C5H11 7.55 7.79 �0.24 1.92 2.24 5.36
15a H CH2CH(CH3)2 OC(CH3)3 8.38 9.19 �0.81 1.94 2.04 3.78
16 COCH3 CH2CH(CH3)2 OC(CH3)3 8.82 8.97 �0.15 1.94 2.04 4.49
17 CO(Cy-C3H5) CH2CH(CH3)2 OC(CH3)3 8.48 8.79 �0.31 1.94 2.04 5.07
18 CON(CH3)2 CH2CH(CH3)2 OC(CH3)3 8.89 8.84 0.05 1.94 2.04 4.90
19 H (CH2)2CH3 OC(CH3)3 8.42 8.59 �0.17 1.48 2.04 3.38
20 COCH3 (CH2)2CH3 OC(CH3)3 8.32 8.37 �0.05 1.48 2.04 4.09

a Not included in deriving QSAR Eq. (2).
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log1=IC50 [ 1:56ð±0:72ÞMRY—4:42ð±1:66ÞpZ
—0:31ð±0:19ÞClogP D 16:33ð±3:33Þ (2)
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O
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f [ 0:796;Q [ 4:155; F3;15 [ 24:070ð3:287Þ
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outlier : X [ H;Y [ CH2CHðCH3Þ2;Z [ OCðCH3Þ3

IC50 is the molar concentration of taxane analogues (4) that
inhibits 50% of the growth of HT-29 cancer cell. MRY is the calculated

molar refractivity of Y substituents, whereas pZ is the calculated
hydrophobicity of Z substituents. Clog P is the calculated hydrophobic
parameter for the whole molecule. According to this QSAR model, the
taxane derivative (4) must have a more hydrophilic Z substituent,
a bulkier or more polarizable Y substituent, and lower hydropho-
bicity of the whole molecule for improved cytotoxicity against HT-29
cancer cells. One compound (X¼H, Y¼CH2CH(CH3)2, Z¼ OC(CH3)3)
was deemed to be an outlier because it was less active than expected,
by 3.7 times the standard deviation. A comparison between observed
and predicted values of log 1/IC50 for paclitaxel analogues (4) used in
the development of QSAR Eq. (2) is shown in Fig. 2.
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Fig. 2. Plot of observed versus predicted log 1/IC50 (Eq. (2)).
3.3. QSAR for the inhibition of growth of HT-29 (human colon
adenocarcinoma cells) by taxane analogues (5)
Maring et al. [57] synthesized a series of C-30-N-acyl analogues
of 9(R)-dihydrotaxol (5) and tested for their cytotoxic activity against
HT-29 cell line and results were given in IC50 (mg/mL). Those values
were converted into log 1/IC50 in molar concentration and given in
Table 3. From the data in Table 3, we developed QSAR Eq. (3).

log1=IC50 [ 0:97ð±0:29ÞB5X—0:75ð±0:55ÞICMe3 D 7:69ð±1:10Þ
(3)

n [ 10; r2 [ 0:897; s [ 0:277; q2 [ 0:793;

q2
f [ 0:727;Q [ 3:419; F2;7 [ 30:481ð4:737Þ

outlier : X [ OCðCH3Þ3

This is a linear equation in terms of B5X (Verloop’s sterimol
width parameter of X substituents) and ICMe3 (an indicator variable
that pinpoints the unusual activity of C(CH3)3 containing X
substituents, where ICMe3 ¼ 1 for the presence of C(CH3)3 fragment
in the X group otherwise ICMe3 ¼ 0). Positive coefficient associated
with B5X suggests that the cytotoxic activity of these compounds
against HT-29 cells increases with the increase of B5X. On the
contrary, the presence of C(CH3)3 containing X substituent (nega-
tive coefficient of ICMe3) decreases the cytotoxic activity of the
analogues. One compound (X ¼ OC(CH3)3) was deemed to be an
outlier because it was more active than expected, by 5.7 times the
standard deviation. A comparison between observed and predicted



Table 3
Biological (IC50, mol L�1) [57], physicochemical, and structural parameters of taxane
analogues (5) used to derive QSAR Eq. (3).

No. X log 1/IC50 (Eq. (3)) B5X ICMe3

Obsd. Pred. D

1 4-CH3-C6H4 10.86 10.69 0.17 3.11 0
2 CH3 9.47 9.66 �0.19 2.04 0
3 C(CH3)3 NDb 10.00 NDb 3.17 1
4 CH2C(CH3)3 10.98 10.98 0.00 4.18 1
5 NHC(CH3)3 11.18 11.18 0.00 4.39 1
6a OC(CH3)3 12.73 11.14 1.59 4.35 1
7 OC(CH3)2CH2CH3 12.11 11.96 0.15 4.42 0
8 OCH(CH3)2 12.02 11.65 0.37 4.10 0
9 OCH2C(CH3)3 11.76 11.96 �0.20 4.42 0
10 OCH2CH(CH3)2 11.57 11.96 �0.39 4.42 0
11 OCH2CH3 11.22 10.93 0.28 3.36 0
12 OCH2C6H5 10.87 11.07 �0.20 3.50 0

a Not included in deriving QSAR Eq. (3).
b Not determined.

Table 4
Biological (IC50, mol L�1) [58], physicochemical, and structural parameters of taxane
analogues (6) used to derive QSAR Eq. (4).

No. R X Y log 1/IC50 (Eq. (4)) LR B5X IHAL

Obsd. Pred. D

1 COCH3 OCH3 CF2H 9.28 9.20 0.08 4.06 3.07 0
2 COC2H5 OCH3 CF2H 9.23 9.26 �0.03 4.87 3.07 0
3 CON(CH3)2 OCH3 CF2H 9.37 9.25 0.12 4.77 3.07 0
4 COOCH3 OCH3 CF2H 9.36 9.25 0.11 4.73 3.07 0
5 COCH3 F CF2H 9.46 9.37 0.09 4.06 1.35 1
6a COC2H5 F CF2H 9.07 9.43 �0.36 4.87 1.35 1
7 CON(CH3)2 F CF2H 9.46 9.43 0.03 4.77 1.35 1
8 COOCH3 F CF2H 9.37 9.42 �0.05 4.73 1.35 1
9a COCH3 Cl CF2H 8.71 9.42 �0.71 4.06 1.80 1
10 COC2H5 Cl CF2H 9.37 9.49 �0.12 4.87 1.80 1
11a CON(CH3)2 Cl CF2H 9.24 9.48 �0.24 4.77 1.80 1
12 COOCH3 Cl CF2H 9.54 9.48 0.06 4.73 1.80 1
13 COCH3 N3 CF2H 9.24 9.33 �0.09 4.06 4.18 0
14 COC2H5 N3 CF2H 9.43 9.39 0.04 4.87 4.18 0
15 CON(CH3)2 N3 CF2H 9.40 9.39 0.01 4.77 4.18 0
16 COOCH3 N3 CF2H 9.44 9.38 0.06 4.73 4.18 0
17 COCH3 OCH3 CF3 9.16 9.20 �0.04 4.06 3.07 0
18 COC2H5 OCH3 CF3 9.27 9.26 0.01 4.87 3.07 0
19 CON(CH3)2 OCH3 CF3 9.17 9.25 �0.08 4.77 3.07 0
20 COOCH3 OCH3 CF3 9.28 9.25 0.03 4.73 3.07 0
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values of log 1/IC50 for paclitaxel analogues V used in the devel-
opment of QSAR Eq. (3) is shown in Fig. 3.
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Fig. 3. Plot of observed versus predicted log 1/IC50 (Eq. (3)).

21 COCH3 F CF3 8.95 8.99 �0.04 4.06 1.35 0
22 COC2H5 F CF3 8.94 9.05 �0.11 4.87 1.35 0
23 CON(CH3)2 F CF3 9.12 9.04 0.08 4.77 1.35 0
24 COOCH3 F CF3 9.07 9.04 0.03 4.73 1.35 0
25 COCH3 Cl CF3 9.07 9.04 0.03 4.06 1.80 0
26 COC2H5 Cl CF3 8.95 9.11 �0.16 4.87 1.80 0
27a CON(CH3)2 Cl CF3 9.35 9.10 0.25 4.77 1.80 0
28 COOCH3 Cl CF3 9.17 9.10 0.07 4.73 1.80 0
29 COCH3 N3 CF3 9.30 9.33 �0.03 4.06 4.18 0
30 COC2H5 N3 CF3 9.40 9.39 0.01 4.87 4.18 0
31 CON(CH3)2 N3 CF3 9.30 9.39 �0.09 4.77 4.18 0
32 COOCH3 N3 CF3 9.40 9.38 0.02 4.73 4.18 0
33 H N3 CF3 9.15 9.18 �0.02 2.06 4.18 0

a Not included in deriving QSAR Eq. (4).
3.4. QSAR for the inhibition of growth of HT-29 (human caucasian
colon adenocarcinoma cells) by taxane analogues (6)
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Kuznetsova et al. [58] synthesized a series of 30-difluor-
omethyl/trifluoromethyl-taxanes (6) with modifications at the C-2
and C-10 positions and evaluated for their in vitro cytotoxicities
against human breast carcinoma (MCF7-S, MCF7-R, LCC6-WT,
LCC6-MDR), non-small cell lung carcinoma (H460) and colon
adenocarcinoma (HT-29) cell lines. The cytotoxicity data of these
analogues (6) against HT-29 cell line (IC50, nM) was converted into
log 1/IC50 in molar concentration and given in Table 4. From the
data in Table 4, QSAR Eq. (4) was developed.
log1=IC50 [ 0:08ð±0:05ÞLR D 0:12ð±0:03ÞB5X

D 0:38ð±0:09ÞIHAL D 8:51ð±0:27Þ (4)

n [ 29; r2 [ 0:807; s [ 0:076; q2 [ 0:742;

q2 [ 0:812;Q [ 11:816; F [ 34:845ð2:991Þ
f 3;25
outliers : R [ COC2H5;X [ F;Y [ CF2H;

R [ COCH3;X [ Cl;Y [ CF2H;

R [ CONðCH3Þ2;X [ Cl;Y [ CF2H;
R [ CONðCH3Þ2;X [ Cl;Y [ CF3
This is a linear equation in terms of LR (Verloop’s sterimol length
parameter of R substituents), B5X (Verloop’s sterimol width

parameter of X substituents) and IHAL (an indicator variable, where
IHAL ¼ 1 for X ¼ F or Cl and Y ¼ CF2H otherwise IHAL ¼ 0). Positive
coefficient associated with LR and B5X suggests that the cytotoxic
activity of these compounds against HT-29 cells increases with an
increase in LR and B5X. The presence of either F or Cl at X position
and CF2H at Y position will also be favorable to the activity as evi-
denced by the positive coefficient of the indicator variable (IHAL).
Four compounds (R ¼ COC2H5, X ¼ F, Y ¼ CF2H; R ¼ COCH3, X ¼ Cl,
Y ¼ CF2H; R ¼ CON(CH3)2, X ¼ Cl, Y ¼ CF2H; R ¼ CON(CH3)2, X ¼ Cl,
Y ¼ CF3) were deemed to be outliers because these analogues were
either less or more active than expected, by 4.9, 9.3, 3.2, and 3.3
times the standard deviation. A comparison between observed and
predicted values of log 1/IC50 for paclitaxel analogues (6) used in
the development of QSAR Eq. (4) is shown in Fig. 4.
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Fig. 4. Plot of observed versus predicted log 1/IC50 (Eq. (4)).
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4. Validation of the QSAR models

QSAR model validation implies quantitative assessment of
model robustness and their predictive power. The predictive power
of a QSAR model can be defined as its ability to predict accurately
the modeled property (e.g. biological activity) of new compounds.
The details about the validation criteria for QSAR models have
already been discussed previously [59–65]. The regression coeffi-
cients/statistics of QSAR models (Eqs. (1)–(4)) are shown in Table 5.
The validation of QSAR models (Eqs. (1)–(4)) constitutes in the
following steps: (a) Statistical Diagnostics, (b) Internal Validation,
and (c) External Validation.
4.1. Statistical diagnostics

(i) n/p Ratio: n/p � 4 or n � 4 p, where n is the number of data
points and p is the number of descriptors used in the QSAR
model. All the four QSAR models (Eqs. (1)–(4)) obey this
thumb condition.

(ii) Fraction of the Variance (r2): The value of r2 may vary between
0 and 1, where 1 means a perfect model explaining 100% of the
variance in the data, and 0 means a model without any
explanatory power. It has already been suggested that the only
QSAR model having r2 > 0.6 will be considered for validation
[63–65]. The values of r2 for these QSAR models (Eqs. (1)–(4))
are from 0.807 to 0.897.
Table 5
Comparison of the regression coefficients and the statistics obtained from the multiregr

QSAR no. System n Regression coefficients

Hydrophobic Steric/pol Indicator v

1 HCT-116 cells 22 1.34 pX �1.97MRX 0.89 ICYAL

2 HT-29 cells 19 �4.42pZ �0.31ClogP 1.56 MRY

3 HT-29 cells 10 0.97 B5X �0.75ICMe3

4 HT-29 cells 29 0.08 LR þ 0.12 B5X 0.38 IHAL

a The figure within parenthesis referred to the literature F-value at 95% level.

Table 6
Y-randomization data for QSAR models Eqs. (1)–(4).

QSAR no. NOR-1a NOR-2 NO

r2 q2 r2 q2 r2

1 0.390 0.014 0.377 0.137 0.39
2 0.584 0.256 0.585 0.270 0.46
3 0.255 �0.207 0.062 �0.527 0.42
4 0.270 0.080 0.295 0.124 0.31

a NOR ¼ number of Y-randomization.
(iii) Cross-Validation Test (q2): According to the literature, a QSAR
model must have q2 > 0.5 for their predictive ability [63–65].
The values of q2 for these QSAR models (Eqs. (1)–(4)) are
ranging from 0.724 to 0.793.

(iv) Standard Deviation (s): The smaller s value is always required
for the predictive QSAR model. The values of s for QSAR models
(Eqs. (1)–(4)) are ranged from 0.076 to 0.360.

(v) r2�q2 < 0.3: This difference between r2 and q2 for a QSAR
model should never be exceeded by 0.3. A large difference
between r2 and q2 suggests the following: (a) over-fitted
model, (b) presence of outliers, or (c) presence of irrelevant
variables in the data set [60]. The values of r2�q2 for the QSAR
models (Eqs. (1)–(4)) are from 0.065 to 0.104.

(vi) Quality Factor (Q): Chance correlation and overfitting, due to
the excess number of descriptors, can be detected by the Q
value. High values of Q (2.569–11.816) for these QSAR models
(Eqs. (1)–(4)) suggest their high predictive power and the lack
of ‘‘overfitting’’ [66,67].

(vii) Fischer Statistics (F): The F value of each QSAR model was
compared to that of their respective literature value at 95%
level [48]. The F-values of QSAR models (Eqs. (1)–(4)) ranging
from 24.070 to 35.379 (where F > F(lit)) suggest that all the
QSAR models are statistically significant at the 95% level.
4.2. Internal validation

(i) Cross-Validations Test: Cross-Validations (CVs) are the most
commonly used techniques for internal validation, in which
compounds with different proportions are removed from the
original data set and developed new QSAR models in order to
verify the internal predictive ability of the original QSAR
model, e.g. q2 (leave-one-out), qf

2 (leave-five-out), qm
2 (leave-

many-out), etc. Cross-validated r2 (q2 or qf
2 or qm

2 ) is calculated
by the following Equation (5):

q2
�

or q2 or q2
m

�
¼ 1�

P�
Yobs � Ypred

�2

� � (5)
f P
Yobs � bY 2

where Yobs, Ypred, and Ŷ are the observed, predicted, and averaged
activities, respectively. In the case of leave-one-out (LOO) cross-
validation, each member of the original data set in turn is removed,
ession analyses (MRA) process for QSAR models (Eqs. (1)–(4)).

Statistical parameters

ariable Intercept r2 q2 r2 � q2 qf
2 s Q Fa

K 9.05 0.855 0.786 0.069 0.772 0.360 2.569 35.379 (3.159)
16.33 0.828 0.724 0.104 0.796 0.219 4.155 24.070 (3.287)

7.69 0.897 0.793 0.104 0.727 0.277 3.419 30.481 (4.737)
8.51 0.807 0.742 0.065 0.812 0.076 11.816 34.845 (2.991)

R-3 NOR-4 NOR-5

q2 r2 q2 r2 q2

0 0.158 0.383 0.054 0.393 0.157
7 0.212 0.482 0.275 0.573 0.371
6 �0.075 0.308 0.014 0.121 �0.789
8 0.158 0.384 0.245 0.446 0.292



Table 7
Random selection pattern of the test set compounds as well as the regression coefficients and statistical parameters of the QSAR for their respective training set compounds
obtained from the division of the original data of QSAR Models (Eqs. (1)–(4)).

QSAR no.a Test set compd Training set compd Regression coefficients Statistical parameters

Hydrophobic Steric/pol Indicator
variable

Intercept r2 q2 s R2
pred

1 2, 8, 10, 12, 14, 17 Rest of the compd (n ¼ 16) 1.32 pX �1.93MRX 0.98 ICYALK 8.97 0.840 0.684 0.382 0.880
2 1, 3, 7, 13, 20 Rest of the compd (n ¼ 14) �5.35pZ �0.28ClogP 1.43 MRY 18.34 0.834 0.730 0.230 0.720
3 1, 2, 10 Rest of the compd (n ¼ 7) 0.92 B5X �0.82ICMe3 7.94 0.816 0.508 0.267 0.922
4 3, 5, 7, 12, 16, 21, 32 Rest of the compd (n ¼ 22) 0.08 LR þ 0.11 B5X 0.29 IHAL 8.54 0.767 0.681 0.073 0.761

a QSAR for the respective training set of the original QSAR.
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and the remaining n � 1 members are used in the development of
new QSAR models. Similarly for leave-five-out (LFO) cross-valida-
tion, five members of the original data set in turn are removed, and
the remaining n � 5 members are used in the development of new
QSAR models. On the other hand, a certain data points are removed
from the original data set in case of leave-many-out (LMO) cross-
validation. A low value of q2 (in the LOO, LFO and/or LMO test)
typically indicates low predictive power of a QSAR model, but its
high value does not necessarily suggest the high predictivity.
Nevertheless, the cross-validated r2 (q2, qf

2, and/or qm
2 ) are

frequently used as an important criterion for both robustness and
predictive ability of the QSAR model. A high value of q2, qf

2, and/or
qm

2 (q2, qf
2, and/or qm

2 > 0.5) is often considered as an ultimate proof
for the high predictive power of QSAR model [63–65]. The values of
q2 and qf

2 for these four QSAR models (Eqs. (1)–(4)) are ranging from
0.724–0.793 to 0.727–0.812, respectively.

(ii) Y-Randomization Test: This is a widely used technique to
establish the QSAR model robustness. In this technique, the
dependent-variable vector (Y vector) is randomly shuffled, and
a new QSAR model is developed using the unchanged inde-
pendent-variable matrix. This process was repeated for five
times at 95% confidence interval. The statistical data of r2 and q2

for five runs are listed in Table 6 (Eqs. (1)–(4)). The lower values
of r2 and q2 in the Y-randomization test confirm the robustness
of the QSAR models (Eqs. (1)–(4)) [64,68].
4.3. External validation

The external validation of QSAR models was carried out in two
steps: (i) Random selection (Training set), and (ii) Predictive power
of the QSAR models.

(i) Random Selection (Training Set): There are several methods for
selecting the training set. The simplest one is a random
selection. In this method, the original (whole) data set is
divided into training (w75%) and test (w25%) sets in a random
manner [19]. The QSAR model for the resulting training set is
then generated by using the same descriptors as those of the
original equation and validated on the basis of their statistics
(acceptance criteria: r2 > 0.6 and q2 > 0.5).

(ii) Predictive power of QSAR models: The true predictive power of
a QSAR model is determined by comparing the predicted and
observed activities of the test set compounds that are not
used in the QSAR model development of training set. The
predictive power of a QSAR model can be estimated by their
predictive R2 ðR2

predÞ, which is calculated by the following
Eq. (6):

R2 ¼ 1�
P�

YpredðtestÞ � Ytest

�2

(6)
pred P�
Ytest � Ytraining

�2
where Ypred(test) and Ytest are the respective predicted and observed
activities of the test set compounds and Y training is the observed
mean activity of the training set compounds [19,37,64].

A random selection pattern of the test sets as well as the
regression coefficients and the statistical parameters of their
respective training sets for all the QSAR models (Eqs. (1)–(4)) are
given in Table 7.
5. Conclusions

An analysis of QSAR models (Eqs. (1)–(4)) reveals a number of
interesting points. The most important of these are p and MR
descriptors. QSAR model Eq. (1) suggests that the cytotoxicity of
taxane derivatives (3) against HCT-116 cells might be improved by
the presence of a more hydrophobic/less polarizable substituent at
C-4 position. On the other hand a bulkier group at C-2, C-10, C-30,
and/or C-30-N, and a more hydrophilic substituent at C-30-N posi-
tions might improve the cytotoxicity of taxane analogues (4–6)
against HT-29 cells as evidenced by the QSAR models (Eqs. (2)–(4)).
In short, the inhibitory activities of taxane analogues against colon
cancers are mainly dependent on the steric (MR, B5, and L) and
hydrophobic (p) descriptors of their substituents, with a major
contribution coming from the molar refractivity (MR) of substitu-
ents. Further development of QSAR studies on taxane analogues
should not only enlarge the areas of their application, but it may
also increase our understanding towards the mechanisms of
chemical–biological interactions.
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V. Meniel, A. Clarke, O. Sansom, I.S. Näthke, J. Cell Biol. 176 (2007) 183–195.
[5] I. Naethke, Nat. Rev. Cancer 6 (2006) 967–974.
[6] C.J. Ceol, D. Pellman, L.I. Zon, Nat. Med. 13 (2007) 1286–1287.
[7] K.W. Kinzler, B. Vogelstein, Cell 87 (1996) 159–170.
[8] M. Linsalata, F. Russo, Nutrition 24 (2008) 382–389.
[9] K. Yang, N. Kurihara, K. Fan, H. Newmark, B. Rigas, L. Bancroft, G. Corner,

E. Livote, M. Lesser, W. Edelmann, A. Velcich, M. Lipkin, L. Augenlicht, Cancer
Res. 68 (2008) 7803–7810.

[10] E.S. Schernhammer, S. Ogino, C.S. Fuchs, Gastroenterology 135 (2008)
770–780.

[11] E. Rudolf, V. Kralova, M. Cervinka, Anticancer Agents Med. Chem. 8 (2008)
598–602.

[12] H. Zhang, M.R. Spitz, G.E. Tomlinson, M.B. Schabath, J.D. Minna, X. Wu, Cancer
Detect. Prev. 26 (2002) 411–418.

[13] D. Sadava, E. Whitlock, S.E. Kane, Biochem. Biophys. Res. Commun. 360 (2007)
233–237.

[14] N. Kumar, D. Shibata, J. Helm, D. Coppola, M. Malafa, Front. Biosci. 12 (2007)
2309–2315.

[15] J.T. Hwang, J. Ha, I.J. Park, S.K. Lee, H.W. Baik, Y.M. Kim, O.J. Park, Cancer Lett.
247 (2007) 115–121.

[16] J. Wils, J. Chemother. 19 (2007) 115–122.
[17] M.S. Mano, F. Duhoux, Clin. Colorectal Cancer 7 (2008) 178–183.
[18] S.G. Arbuck, B.A. Blaylock, Taxol: clinical results and current issues in devel-

opment. in: M. Suffness (Ed.), Taxol: Science and Applications. CRC Press, Boca
Raton, 1995, pp. 379–415.



R.P. Verma, C. Hansch / European Journal of Medicinal Chemistry 45 (2010) 1470–1477 1477
[19] R.P. Verma, C. Hansch, ChemMedChem 3 (2008) 642–652.
[20] E.J. Roh, D. Kim, C.O. Lee, S.U. Choi, C.E. Song, Bioorg. Med. Chem. 10 (2002)

3145–3151.
[21] I. Ojima, J.C. Slater, S.D. Kuduk, C.S. Takeuchi, R.H. Gimi, C.M. Sun, Y.H. Park,

P. Pera, J.M. Veith, R.J. Bernacki, J. Med. Chem. 40 (1997) 267–278.
[22] P.B. Schiff, J. Fant, S.B. Horwitz, Nature 277 (1979) 665–667.
[23] M.V. Blagosklonny, T. Fojo, Int. J. Cancer 83 (1999) 151–156.
[24] T.-H. Wang, H.-S. Wang, Y.-K. Song, Cancer 88 (2000) 2619–2628.
[25] C. Hansch, R.P. Verma, Mol. Pharmaceutics 5 (2008) 151–161.
[26] C. Hansch, P.P. Maloney, T. Fujita, R.M. Muir, Nature 194 (1962) 178–180.
[27] J.M. Bermudez-Saldana, M.T.D. Cronin, Pest Manag. Sci. 62 (2006) 819–831.
[28] T.W. Schultz, M. Hewitt, T.I. Netzeva, M.T.D. Cronin, QSAR Comb. Sci. 26 (2007)

238–254.
[29] C. Hansch, A. Leo, Exploring QSAR: Fundamentals and Applications in

Chemistry and Biology. American Chemical Society, Washington D.C., 1995.
[30] C.D. Selassie, R. Garg, S. Kapur, A. Kurup, R.P. Verma, S.B. Mekapati, C. Hansch,

Chem. Rev. 102 (2002) 2585–2605.
[31] R.P. Verma, C. Hansch, Chem. Rev. 109 (2009) 213–235.
[32] R.P. Verma, C. Hansch, Bioorg. Med. Chem. 15 (2007) 2223–2268.
[33] M. Fujikawa, K. Nakao, R. Shimizu, M. Akamatsu, Bioorg. Med. Chem. 15 (2007)

3756–3767.
[34] R.P. Verma, C. Hansch, C.D. Selassie, J. Comput. Aided Mol. Des. 21 (2007) 3–22.
[35] R.P. Verma, Top. Heterocycl. Chem. 9 (2007) 53–86.
[36] R. Garg, S.P. Gupta, H. Gao, M.S. Babu, A.K. Debnath, C. Hansch, Chem. Rev. 99

(1999) 3525–3601.
[37] R.P. Verma, C. Hansch, Mol. Pharmaceutics 5 (2008) 745–759.
[38] R.P. Verma, A. Kurup, S.B. Mekapati, C. Hansch, Bioorg. Med. Chem. 13 (2005)

933–948.
[39] L.H. Hall, L.M. Hall, SAR QSAR Environ. Res. 16 (2005) 13–41.
[40] C. Hansch, A. Leo, S.B. Mekapati, A. Kurup, Bioorg. Med. Chem. 12 (2004)

3391–3400.
[41] M.T.H. Khan, I. Sylte, Curr. Drug Discov. Tech. 4 (2007) 141–149.
[42] C.D. Selassie, S.B. Mekapati, R.P. Verma, Curr. Top. Med. Chem. 2 (2002) 1357–1379.
[43] C-QSAR Program, BioByte Corp., 201W, 4th St., Suit 204, Claremont, CA 91711,

USA.www.biobyte.com.
[44] C. Hansch, D. Hoekman, A. Leo, D. Weininger, C.D. Selassie, Chem. Rev. 102

(2002) 783–812.
[45] R.P. Verma, C. Hansch, Nat. Protoc., http://www.natureprotocols.com/2007/03/

05/development_of_qsar_models_usi_1.php. doi:10.1038/nprot.2007.125.
[46] A. Verloop, The Sterimol Approach to Drug Design. Marcel Dekker, New York,
1987.

[47] R.D. Cramer III, J.D. Bunce, D.E. Patterson, I.E. Frank, Quant. Struct. Act. Relat. 7
(1988) 18–25.

[48] C. A Bennett, N.L. Franklin, Statistical Analysis in Chemistry and the Chemical
Industry. John Wiley & Sons, New York, 1967, pp. 708–709 (5th printing).

[49] R.P. Verma, C. Hansch, Bioorg. Med. Chem. 13 (2005) 4597–4621.
[50] J. Polanski, A. Bak, R. Gieleciak, T. Magdziarz, J. Chem. Inf. Model 46 (2006)

2310–2318.
[51] S. Ekins, J. Mestres, B. Testa, Br. J. Pharmacol. 152 (2007) 9–20.
[52] C.D. Selassie, S. Kapur, R.P. Verma, M. Rosario, J. Med. Chem. 48 (2005)

7234–7242.
[53] R.P. Verma, C. Hansch, Mol. Pharm 3 (2006) 441–450.
[54] C. Hansch, R.P. Verma, ChemMedChem 2 (2007) 1807–1813.
[55] R.P. Verma, C. Hansch, J. Pharm. Sci. 97 (2008) 88–110.
[56] S.-H. Chen, J.-M. Wei, B.H. Long, C.A. Fairchild, J. Carboni, S.W. Mamber,

W.C. Rose, K. Johnston, A.M. Casazza, J.F. Kadow, V. Farina, D.M. Vyas,
T.W. Doyle, Bioorg. Med. Chem. Lett. 5 (1995) 2741–2746.

[57] C.J. Maring, D.J. Grampovnik, C.M. Yeung, L.L. Klein, L. Li, S.A. Thomas,
J.J. Plattner, Bioorg. Med. Chem. Lett. 4 (1994) 1429–1432.

[58] L.V. Kuznetsova, A. Pepe, I.M. Ungureanu, P. Pera, R.J. Bernacki, I. Ojima, J. Fluor.
Chem. 129 (2008) 817–828.

[59] J.S. Jaworska, M. Comber, C. Auer, C.J. van Leeuwen, Environ. Health Perspect.
111 (2003) 1358–1360.

[60] L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell,
P. Gramatica, Environ. Health Prospect. 111 (2003) 1361–1375.

[61] M.T.D. Cronin, J.D. Walker, J.S. Jaworska, M.H.I. Comber, C.D. Watts, A.P. Worth,
Environ. Health Perspect. 111 (2003) 1376–1390.

[62] M.T.D. Cronin, J.S. Jaworska, J.D. Walker, M.H.I. Comber, C.D. Watts, A.P. Worth,
Environ. Health Perspect. 111 (2003) 1391–1401.

[63] A. Golbraikh, A. Tropsha, J. Mol. Graph. Model 20 (2002) 269–276.
[64] A. Tropsha, P. Gramatica, V.K. Gombar, QSAR Comb. Sci. 22 (2003) 69–77.
[65] S. Zhang, L. Wei, K. Bastow, W. Zheng, A. Brossi, K.-H. Lee, A. Tropsha,

J. Comput. Aided Mol. Des. 21 (2007) 97–112.
[66] L. Pogliani, Chem. Rev. 100 (2000) 3827–3858.
[67] L. Pogliani, J. Phys. Chem. 100 (1996) 18065–18077.
[68] S. Wold, L. Eriksson, Statistical validation of QSAR results, validation tools. in:

H. van de Waterbeemd (Ed.), Chemometrics Methods in Molecular Design.
Wiley-VCH, Weinheim, 1995, pp. 309–318.

http://www.biobyte.com
http://www.natureprotocols.com/2007/03/05/development_of_qsar_models_usi_1.php
http://www.natureprotocols.com/2007/03/05/development_of_qsar_models_usi_1.php

	QSAR modeling of taxane analogues against colon cancer
	Introduction
	Experimental
	Molecular descriptors
	Statistical parameters
	Outliers
	Model validation

	Results and discussion
	QSAR for the inhibition of growth of HCT-116 (human colon cancer cells) by paclitaxel analogues (3)
	QSAR for the inhibition of growth of HT-29 (human colon carcinoma cells) by taxane analogues (4)
	QSAR for the inhibition of growth of HT-29 (human colon adenocarcinoma cells) by taxane analogues (5)
	QSAR for the inhibition of growth of HT-29 (human caucasian colon adenocarcinoma cells) by taxane analogues (6)

	Validation of the QSAR models
	Statistical diagnostics
	Internal validation
	External validation

	Conclusions
	References


