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 Abstract: Background: Docking allows to predict ligand binding to proteins, since the 
3D-structure for the target is available. Several docking studies have been carried out to 
identify potential ligands for drug targets. Many of these studies resulted in the leads 
that were later developed as drugs.  

Objective: Our goal here is to describe the development of an integrated computational 
tool to assess docking accuracy and build new scoring functions to predict ligand-
binding affinity.  

Method: We carried out docking simulations using MVD program for a data set 
available on CSAR 2014 database (coagulation factor Xa) for which ligand-binding 
information and structures are available. These docking results were analyzed using SAnDReS available at 
www.sandres.net. Machine learning methods were applied to build new scoring functions and our results 
were compared with previously published benchmarks. 

Results: Our integrated docking strategy generated poses with docking accuracy higher than previously 
published benchmarks. In addition, the new scoring function developed using SAnDReS shows better 
performance than well-established scoring functions such the ones available in Autodock, Autodock-
Vina, Gold, Glide, and MVD.  

Conclusion: The big data generated during docking lacked an integrated computational tool for 
statistical analysis of the influence of structural parameters on docking and scoring function 
performance. Here we describe methods to evaluate docking results using SAnDReS, a computational 
environment for statistical analysis of docking results and development of scoring functions. We 
believe that SAnDReS is a computational tool with potential to improve accuracy in docking projects. 

A R T I C L E  H I S T O R Y 

 
Received: June 4, 2016 
Revised: August 31, 2016 
Accepted: September 14, 2016 
 
 
DOI: 10.2174/1386207319666160 
927111347 

Keywords: Dock, protein, target, drug, machine learning. 

1. INTRODUCTION 

 The data explosion in the number of macromolecules 
deposited in the Protein Data Bank (PDB) [1-3] opens the 
possibility to investigate the correlation of these 
experimentally determined structures with functional 
information. This is a favorable scenario for application of 
computational systems biology approaches [4]. Such 
approaches can be used to develop mathematical models to 
predict ligand-binding affinity for a target protein. It is also 
possible to use these three-dimensional structures to study  
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drug targets. The use of structural information makes 
possible to apply virtual screening (VS) methodology to 
identify novel hits and guide future development of new 
drugs. The main method to investigate potential new hits for 
a target protein is the procedure of protein-ligand docking 
simulations [5-11].  
 Protein-ligand docking simulations employ scoring 
functions to evaluate ligand-binding energy [10]. For 
validation of scoring functions, it is common to investigate 
the correlation between the experimental binding affinity 
with scoring functions. This statistical analysis can be based 
on squared Pearson’s (R2) or Spearman’s (ρ) correlation 
coefficients [12]. Analysis of scoring function performance 
can also be carried out using data sets with active and decoy 
ligands, as proposed in the directory of useful decoys, 
enhanced (DUD-E) [13]. 
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 Furthermore, the richness of structural information opens 
the possibility to analyze molecular interactions that may be 
of pivotal importance for the success of protein-ligand 
docking simulations (re-docking and ensemble-docking 
simulations). If we focus our analysis on crystallographic 
structures, we could expect that crystallographic parameters 
such as resolution, R-free and R-factor [14] would exhibit 
some correlation with docking results. Moreover, deviations 
from ideal geometry, such as bond length, bond angle, and 
torsion angle [15] may also exhibit correlation with docking 
root-mean-square deviation (RMSD). It was with this in 
mind, that we developed SAnDReS, to integrate in one 
computational tool the statistical methods to investigate re-
docking, ensemble docking, correlation of docking results 
with structural parameters, correlation of scoring functions 
with ligand-binding affinity, and a method to build 
polynomial scoring functions.  
Here we describe the development of the SAnDReS and its 
application to an ensemble of crystallographic structures, for 
which binding affinity information is available. In the next 
sections, we describe the methods to evaluate docking 
accuracy, and discuss the docking results obtained for 
structures from Community-Structure Active Resource 
CSAR database, 2014 Benchmark Exercise for coagulation 
factor Xa. 

2. METHODS 

2.1. SAnDReS  

 SAnDReS is an acronym for Statistical Analysis of 
Docking Results and Scoring functions. SAnDReS was 
developed in Python programming language (version 3), 
using the SciPy (http://scipy.org/), NumPy 
(http://www.numpy.org/), SciKit-Learn (http://scikit-
learn.org/stable/), and Matplotlib (http://matplotlib.org/) 
libraries. SAnDReS can analyze data generated by any 
protein-ligand docking program, the only requisite is to have 
protein-ligand structures in the PDB format, ligands in 
Structure Data Format (SDF), docking and scoring function 
data in comma separated values (CSV) format. SAnDReS 
automatically retrieves binding affinity information from 
PDB as a CSV file. The binding affinity CSV files bring a 
summary of experimental binding affinity data available in 
the PDB. For inhibitory constant (Ki), dissociation constant 
(Kd), half-maximal inhibitory concentration (IC50), and half 
maximal effective concentration (EC50) these data are 
expressed in nM (10-9M). For thermodynamic data, such as 
Gibbs free energy of binding (ΔG) and enthalpy (ΔH), 
binding information is expressed in kJ/mol, as well as Ka in 
1/M. This binding information was gathered from three other 
databases: MOAD [16], BindingDB [17] and PDBbind [18]. 
SAnDReS presents three programs, one is a GUI script to 
launch a SAnDReS window to manage all analysis that can 
be carried out. The second program is the SAnDReS main 
program, which is called by SAnDReS GUI window to run 
most of its tasks. The third program, called 
scikit_regression_methods_v1.py is an implementation of 
machine learning techniques for regression. 
 

2.2. Statistical Analysis and Plots 

  SAnDReS calculates two correlation coefficients, 
squared correlation coefficient (R2 ) and Spearman’s rank 
correlation coefficient (ρ). R2 is defined by equation (1) 

 

                                                        (Eq. 1) 

RSS and TSS are defined by the following relationships: 
 

  

  

 

where ycalc,j are the values obtained by feeding independent 
variables into the regression equation, yj are the experimental 
observations, for instance log(Ki), <y> is the mean value for 
y, and N the number of observations. 
The Spearman’s rank correlation coefficient is defined by 
equation (2): 
 

(Eq. 2) 

 

where dj is the difference in the ranks given to the two 
variable values for each item of data [12].  
 Calculation of statistical parameters such the correlation 
coefficients, p-values, maximum, minimum, median and 
mean values, F-stat, and standard deviation of docking 
results are based on SciPy and NumPy libraries. All protein-
ligand docking results should be in CSV file to be readable 
by SAnDReS. Besides the statistical analysis of the 
correlation between RMSD and scoring functions, SAnDReS 
can also carry out statistical analysis of scoring functions and 
binding affinity.  
 SAnDReS calculates the correlation between 
experimental binding affinity and predicted values (scoring 
functions), where the binding information is automatically 
read from the PDB, as previously explained. SAnDReS can 
generate high-quality scatter plots for these CSV files, using 
a plot interface. All scatter plots are generated using 
Matplotlib library.  

2.3. Overall Docking Strategy  

 There are different approaches to carrying out protein-
ligand docking simulation, for instance, a recent study 
reported the development of a strategy on binding-pose 
selection and docking selection [19]. In the present work, we 
consider the selection of the biomolecular system (protein), 
docking simulations, scoring function development, and 
validation phases, which are all included in the flowchart 
shown in Fig. (1). This strategy is independent of the 
program used in the docking simulation. In Fig. (1), the grey 
boxes indicate the functions that can be carried out by 
SAnDReS, the other steps can be performed by any docking 
program. 
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 For all structures discussed in this work, we adopted the 
molecular docking strategy described in the Fig. (1). Briefly, 
all molecular docking simulations were carried out by 
Molegro Virtual Docker (MVD) [20] and CLC Drug 
Discovery Workbench (http://www.clcbio.com/products/clc-
drug-discovery-workbench/). MVD has shown better 
docking performance when compared with modern docking 
programs [20]. All protein and ligand atoms were prepared 
using default charge values for the programs MVD and CLC 
Drug Discovery Workbench. For each data set, the highest 
resolution structure was chosen as the most adequate for re-
docking simulations. This structure was then submitted to 
the 32 docking protocols described in Table 1. For each 
protocol, 1000 poses were generated. Besides the MolDock 
and Plants Scores, we also analyzed docking results using 
the additional scoring functions implemented in the program 
MVD, as described in Table 2. For a full description of these 
scoring functions see the following references [20-22]. The 
most promising protocol was selected using as criteria the 
lowest RMSD and the highest correlation coefficient 
between the scoring function and docking RMSD. 
 After selecting the protocol, the rest of the structures in 
the ensemble were submitted to the same protocol for 
comparison. This procedure is referred to as ensemble dock, 
and the results were stored in a CSV file, where each line 
brings one structure in the ensemble. The ensemble-dock 
CSV file is used for two types of statistical analysis, one to 
investigate the correlation between docking RMSD and 
structural parameters and the second to evaluate the 
correlation between docking RMSD and scoring functions 
(ensemble dock). 
 We also calculate the scoring functions using MVD for 
each structure in the ensemble, using the crystallographic 
position of the active ligand. Our goal here is to test the 
accuracy of scoring functions in predicting binding affinity. 
We focus on crystallographic position in order to have the 
most reliable information to test the prediction ability of 
scoring functions. Next we describe the details of each task 
of SAnDReS program.  

2.4. Download from PDB 

 SAnDReS has tasks to download structures and related 
binding affinity information from the PDB [1-3]. To 

download atomic coordinates in the PDB format, SAnDReS 
has the GETSTR task, which reads a CSV file 
(pdbCodes.csv) with the PDB access codes and directly 
downloads the structures from the PDB site. Since one of the 
major goals of any molecular docking simulation is to have a 
reliable model to predict ligand-binding affinity, SAnDReS 
has a task to download the experimental binding affinity 
from the PDB. This task is called GETBIND. It reads the 
same pdbCodes.csv file and downloads the binding affinity 
information as a CSV file. The structures and binding 
affinity information of structures discussed in the present 
work have been downloaded using SAnDReS tasks 
GETSTR and GETBIND.  

2.5. Pre-Docking Analysis  

 The main goal of pre-docking analysis is to investigate 
the overall quality of the crystallographic structures in the 
data set. Pre-docking analysis is able to identify which 
structure in the data set has the most reliable crystallographic 
information, or the better overall stereo-chemical quality, 
using analysis of RMSD deviation from ideal geometry. This 
information is read from the PDB files in the data set. Prior 
to statistical analysis of the ensemble of structures, 
SAnDReS performs data filtering by eliminating repeated 
ligands in the data set. Pre-docking analysis (STSTRU task) 
identifies the structure for minimum and maximum values 
for structural parameters.  
 After statistical analysis of the ensemble of structures, 
SAnDReS generates the biological assembly for each 
structure, if the structure in the asymmetric unit is different 
from the biological assembly. Our goal here is to have a 
reliable biomolecular model for docking simulations, for 
instance, structures where the ligand-binding pockets are at 
interface between monomers of an oligomeric structure. 
What SAnDReS does is to read the rotation matrix and 
translation vector, present in REMARK 350 of the PDB file, 
and then applies the rotation and translation for each 
monomer to generate the biological assembly. Let’s consider 
the structure of human purine nucleoside phophorylase (EC 
2.4.2.1) as an example, the asymmetric unit content is a 
monomeric structure. The biological assembly is trimer [23]. 
Furthermore, the binding pocket is at interface between the 
monomers. Therefore, any docking project should focus on 

 

 

 

 

 

 

 

 

Fig. (1). Protein-ligand docking flowchart. 

 



4    Combinatorial Chemistry & High Throughput Screening, 2016, Vol. 19, No. 9 Xavier et al. 

the biological assembly, to have a more reliable system to 
carry out protein-ligand docking simulations. If there is no 
REMARK 350 matrix and vector in the PDB file, no 
biological assembly will be generated, and the asymmetric 
unit content will be used for docking simulations. 
 In the next step of the Pre-docking analysis, SAnDReS 
reads each PDB entry in the ensemble of structures, and 
checks if there are water molecules close to the active ligand. 
SAnDReS tests all molecules inside a virtual sphere centered 
at the active ligand. After finishing finding the water 
molecules, SAnDReS writes all PDB files, for which water 
molecules were found inside the virtual sphere. 

 The last step of the pre-docking analysis is to generate a 
merged SDF file with all ligands in the data set. This file is 
intended to be used to create a data set with actives and 
decoys, to be described later. 

2.6. Analysis of Re-Docking Results  

 In this analysis, SAnDReS evaluates the correlation 
between scoring functions and docking RMSD for each 
structure, which is performed by running STRMSD task. In 
addition the docking RMSD information, obtained from any  
 

Table 1. Docking protocols. 

Protocol Scoring Function Search Algorithm Displaceable Water? 

1 MolDock Score MolDock Optimizer Yes 

2 MolDock Score MolDock Optimizer No 

3 MolDock Score MolDock (Simplex Evolution)(SE) Yes 

4 MolDock Score MolDock (Simplex Evolution) (SE) No 

5 MolDock Score Iterated Simplex Yes 

6 MolDock Score Iterated Simplex No 

7 MolDock Score Iterated Simplex (Ant Colony Optimization) Yes 

8 MolDock Score Iterated Simplex (Ant Colony Optimization) No 

9 MolDock Score [GRID] MolDock Optimizer Yes 

10 MolDock Score [GRID] MolDock Optimizer No 

11 MolDock Score [GRID] MolDock (Simplex Evolution) (SE) Yes 

12 MolDock Score [GRID] MolDock (Simplex Evolution) (SE) No 

13 MolDock Score [GRID] Iterated Simplex Yes 

14 MolDock Score [GRID] Iterated Simplex No 

15 MolDock Score [GRID] Iterated Simplex (Ant Colony Optimization) Yes 

16 MolDock Score [GRID] Iterated Simplex (Ant Colony Optimization) No 

17 Plants Score MolDock Optimizer Yes 

18 Plants Score MolDock Optimizer No 

19 Plants Score MolDock (Simplex Evolution) (SE) Yes 

20 Plants Score MolDock (Simplex Evolution) (SE) No 

21 Plants Score Iterated Simplex Yes 

22 Plants Score Iterated Simplex No 

23 Plants Score Iterated Simplex (Ant Colony Optimization) Yes 

24 Plants Score Iterated Simplex (Ant Colony Optimization) No 

25 Plants Score [GRID] MolDock Optimizer Yes 

26 Plants Score [GRID] MolDock Optimizer No 

27 Plants Score [GRID] MolDock (Simplex Evolution) (SE) Yes 

28 Plants Score [GRID] MolDock (Simplex Evolution) (SE) No 

29 Plants Score [GRID] Iterated Simplex Yes 

30 Plants Score [GRID] Iterated Simplex No 

31 Plants Score [GRID] Iterated Simplex (Ant Colony Optimization) Yes 

32 Plants Score [GRID] Iterated Simplex (Ant Colony Optimization) No 
Standard protocols available for MVD and CLC Drug Discovery Workbench were applied.  
GRID option means a faster scoring function calculation, without considering hydrogen-bond angles. 
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Table 2. List of all scoring functions used in this study. 

Scoring Function Description 

MolDock Score Protein ligand scoring function  

Plants Score Protein ligand scoring function  

Re-rank Score Protein ligand scoring function  

Interaction Score Total interaction energy between the pose and 
the target molecule(s)  

Co-factor Score Interaction energy between the pose and the 
co-factor(s) 

Protein Score Interaction energy between the pose and the 
protein  

Water Score Interaction energy between the pose and the 
water molecules 

Internal Score Internal energy of the pose 

Electro Score Short-range electrostatic protein-ligand 
interactions (r<4.5Å) 

Electro Long Score Long-range electrostatic protein-ligand 
interactions (r>4.5A) 

H-Bond Score Hydrogen bonding energy 

LE1 Score Ligand Efficiency 1: MolDock Score divided 
by Heavy Atoms count 

LE3 Score Ligand Efficiency 3: Re-rank Score divided by 
Heavy Atoms count 

Docking Score Score evaluated before post-processing (either 
Plants or MolDock). Only used for re-docking. 

Displaced Water 
Score 

Energy contributions from non-displaced and 
displaced water interactions (for odd number 

protocols in Table 1).  
 
docking program, SAnDReS uses this data to evaluate 
docking accuracy [24]. The equation to calculate docking 
accuracy (DA1(a,b)) has been implemented in the program 
SAnDReS as follows, 

 
(Eq. 3) 

where fa is the fraction poses for which the docking RMSD is 
less than a and fb is the fraction poses for which the docking 
RMSD is less than b, where a<b. More recently, it has been 
proposed the use of an extended docking accuracy 
DA2(a,b,c) [19], which is also implemented in the program 
SAnDReS as follows: 

(Eq. 4) 

where fc is the fraction poses for which the docking RMSD is 
less than c, where a<b<c, and DA1 has been previously 
defined in the equation (3). In the current version of 
SAnDReS, the values for a, b, and c are 2.0, 3.0, and 4.0 Å, 
respectively. The main goal in the pre-docking is not only to 
use the docking RMSD as criterion to select the protocol for 
docking simulations, but also the correlation between 
docking RMSD and scoring functions.  

2.7. Analysis of Structural Parameters  

 We can analyze the correlation of docking (ensemble 
docking) results against structural parameters (derived from 

the crystallographic information stored in the PDB files of 
the data set), this is done by running STDOCK task. 
SAnDReS investigates the correlation between docking 
RMSD and over one hundred structural parameters 
(supplementary material 1). The main goal of STDOCK task 
is to investigate correlation of crystallographic parameters, 
such as R-factor and R-free with the docking results. It is 
noteworthy, that since SAnDReS parses structural 
parameters directly from the information stored in the PDB 
files, the data is noisy due to the lack of standardization in 
crystallographic refinement programs [25-27]. For instance, 
a structural parameter such as phase error (obtained from 
maximum likelihood method) is calculated in the structure 
refined using the program PHENIX [27], but it is not 
calculated in another crystallographic refinement program 
such as TNT-Buster [26]. Therefore, some of the structural 
parameters may be missing in certain structures of the data 
set. Besides structural parameters directly read from the PDB 
files, SAnDReS uses this information to calculate mean 
values for B-factor and occupancy. In addition, SAnDReS 
calculates modified Matthews coefficients for protein 
content inside a virtual sphere centered at the active ligand. 
The idea is to investigate the correlation of modified 
Matthew coefficient with docking RMSD. Modified 
Matthews (VM

* ) coefficient is calculated using equation (5), 

 
 

(Eq. 5) 

where Vsphere is the volume of a virtual sphere centered at 
active ligand and MW is the molecular weight the protein 
inside the virtual sphere. The volume is expressed in Å3 and 
MW in Daltons. The original Matthews coefficient is used to 
evaluate solvent content in protein crystals and estimate the 
number of protein molecules in the unit cell [28]. It is 
determined dividing the volume of unit cell by its protein 
content. Besides the modified Matthews coefficient, 
SAnDReS also calculates the mean values for occupancy and 
B-factors inside each virtual sphere centered at the active 
ligand. The goal here is to evaluate the correlation of these 
structural parameters close to the active ligand, which may 
reveal some influence on docking results. 
 Molecular docking simulation relies heavily on structural 
information derived from crystallographic structures, so it is 
natural to open the possibility to investigate the influence of 
structural parameters in the docking results. 

2.8. Analysis of Ensemble Docking  

 Here we intend to analyze the correlation between 
docking RMSD and scoring functions. Differently from the 
re-docking analysis, here we have the docking RMSDs for 
an ensemble of structures. This analysis can be performed on 
two types of data sets. The first type is one where all 
structures are of the same protein. The second type occurs 
when we have several different proteins in the same data set.  

2.9. Scoring Function  

 The goal in this step is to test the performance of scoring 
functions in predicting binding affinity. To carry out the 

) f  0.5(f  f   b)  DA1(a, baa −+=

)f 0.25(f  b)  a, DA1(     c)  b,  a, DA2( bc −+=

VM
* =

Vsphere
MW
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analysis of correlation between the binding affinity and the 
scoring functions, SAnDReS runs STSCOR task.  

2.10. Polynomial Scoring Functions  

 SAnDReS allows using the scoring functions as 
templates to build new polynomial scoring functions, where 
each term in the polynomial equation is a scoring function. 
This opens the possibility to build new regression models, 
based on the scoring functions used in the previous analysis. 
We could also use descriptors in this analysis, but our 
discussion here is focused on scoring functions. The current 
version of SAnDReS (1.0.1) builds polynomial scoring 
functions up to three independent variables, where each 
independent variable is a scoring function, or a mixed term 
involving two different scoring functions or the squared 
scoring function. What SAnDReS does is to find the 
coefficients (weights) for the polynomial equation indicated 
below using regression analysis, 

 
 

 (Eq. 6) 

where score is the scoring function value, ω0 is the 
regression constant, and other ω’s are the weights for each 
independent variable in the equation. SAnDReS uses 
machine learning methods from SciKit-Learn library to carry 
out regression analysis [29]. Since we have 9 terms in the 
equation (6), we can have up to 511 different polynomial 
equations (29 -1), we don’t consider the equation score = ω0.  
 SAnDReS generates 9-bit binary strings (bit strings) to 
build the polynomial equations, being the first 000000001 
and the last 111111111. When we have “1” means that the 
term will be included in the polynomial equation and “0” 
means that the equivalent term will be omitted from the 
equation. For instance, the bit string 100000001 represents 
polynomial equation score = ω0 + ω1 x1 + ω9 x3

2. A 
simplified version of the polynomial scoring function 
method has been previously described for the program 
Polscore [30]. For binding information Ki, Kd, IC50, EC50, 
and Ka, it is used the log of the value, for instance log(IC50). 
For thermodynamics functions (ΔG and ΔH), it is used the 
values in kcal/mol. The percentage of the data to be used in 
the training set is determined by the user. The default value 
for the percentage of ligands in the training set is 
approximately 70%, as suggested by Cichero et al 2010 [31]. 
 The training set will be used to build the regression 
model and the test set will be used to evaluate the predictive 
ability of the regression model. After including new 
polynomial equations for evaluating ligand-binding affinity, 
new round of scoring function analysis can be carried out.  
 In the present work, we used the MolDock Score 
(EMolDock Score) implemented in the program MVD to calculate 
the protein-ligand interaction energy defined as follows: 
EMolDock Score = Eintra + Einter (Eq. 7) 
 
where the term Einter is intermolecular energy, for the protein-
ligand structure. This term is computed as follows, 

                                                        (Eq. 8) 

In the above equation, N1 and N2, indicate the numbers of 
atoms in the ligand and protein, respectively. The component 
EPLP indicates the piecewise linear potential described 
elsewhere [20] and rij accounts for interatomic distance. The 
second term is an electrostatic potential, where qi and qj 
represent the punctual electric charges for ligand and protein 
atoms, respectively. The intramolecular term of equation (7) 
(Eintra) is calculated as: 

           

                 (Eq. 9) 

 
N1 and rij are the same as defined for equation (8), but for 
equation (9), we have a double summation for N1 non-
hydrogen atoms in the ligand, which are more than 2 bonds 
apart and computes the EPLP and Eclash for each atom pair. 
Eclash is a fixed penalty term of 1000 given to intra-atomic 
distance <2 Å. Furthermore, we have also a term for torsion 
energy, which is determined for torsional angles found in the 
ligand. The terms m, θ0 and A are described by Thomsen and 
Christensen, 2006 [20]. The term θ is the dihedral angle. We 
also analyzed docking results using the additional scoring 
functions implemented in the program MVD, as described in 
Table 2. There scoring functions were used as terms (xj) in 
the equation (6). 

2.11. Decoys and Actives  

 SAnDReS is able to generate user-defined data sets 
which are composed of decoys + actives. This data set is 
partially based on DUD-E data [13]. SAnDReS can merge in 
one SDF file, the actives being studied in the data set 
(actives for which there are crystallographic structures) and 
part of the decoys available in the DUD-E data set. The 
decoys are gathered from the DUD-E database. SAnDReS 
generates a new merged file with actives and decoys. The 
decoys are randomly selected from the DUD-E file specified 
by the user. In addition, the user can define the percentage of 
the actives and decoys in the data set.  
 This SAnDReS-generated data set can be used to test the 
ability of a protein-ligand docking program to find active 
ligands embedded in a data set composed of decoys and 
actives. To do so, we run a small VS, using the best docking 
protocol, previously selected for the program MVD, and 
rank the ligands using MVD scoring functions and 
polynomial scoring functions. In this analysis, SAnDReS 
calculates enrichment factors, and generates receiver 
operating characteristics (ROC) curves for evaluation of 
scoring function performance. SAnDReS generates ROC 
curves based on the data generated in a VS simulation 
focused on a data set composed of decoy and active ligands. 
The ROC curve is a standard method of machine learning 
research and it is valuable graphical tool for analysis of 
docking results, since it shows the overall performance of a 
binary classifier system, specifically discriminating between 
actives and decoys. The curve is created by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at 
various threshold settings. Plots are generated using 
Matplotlib library and the area under the curve for ROC 
curves are calculated using SciKit-learn library [29]. 

2
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 SAnDReS uses decoy and active results to determine 
enrichment factor [32], as defined below, 

 
                                     (Eq. 10) 

 

where Ha is the number of active ligands in the n top-ranked 
compounds (Ht ) of a total database of N compounds of 
which a indicates the number of actives. It is expected 
EF>>1 for successful VS simulations. SAnDReS calculates 
EF for top-ranked compounds for 1 %, 2 %, 5 %, 10 % and 
20 % of N, named EF1, EF2, EF5, EF10, and EF20, 
respectively. 

2.12. Data Set 

 The structures were obtained from Community-Structure 
Active Resource CSAR database (2014 Benchmark Exercise 
for coagulation factor Xa (EC 3.4.21.6)) 
(http://csardock.org/). We filtered the data set to include only 
structures for which Ki information was available in the PDB 
and water molecules were inside a sphere centered at active 
ligand with radius of 15.0 Å. We ended up with an ensemble 
of 82 structures out 125 available at CSAR database. This 
data set will be referred to as Xa data set. The PDB access 
codes for all structures in the Xa data set are shown in the 
supplementary material 2. 

3. RESULTS AND DISCUSSION 

3.1. Analysis of Pre-Docking and Re-Docking Results  

 Using the X-ray crystallographic resolution as a selection 
criterion, SAnDReS identified the PDB access code 2JKH 
[33] as a best structure for re-docking simulation. It is 
noteworthy that, a lower numerical value of crystallographic 
resolution means better overall X-ray crystallographic data. 
The structure 2JKH was employed for re-docking 
simulations, using the 32 docking protocols listed in the 
Table 1. 
 If we consider the lowest docking RMSD, the best 
protocol is the number 23. This protocol uses as search 
engine Iterated Simplex (Ant Colony Optimization) 
algorithm [20]. To rank results the program MVD makes 
possible to apply all scoring functions available in Table 2. 
For protocol 23, low values of docking RMSDs (< 1.0 Å) 
were observed for most of the scoring functions (Plants, 
MolDock, Re-rank, Interaction, Protein, LE1, LE3, and 
Docking Scores), which indicates that we could use any of 
these scoring functions to rank our docking results obtained 
with protocol 23. The highest Spearman’s rank correlation 
coefficient (ρ = 0.923), was obtained for Plants Score 
function, with p-value < 0.001. Protocol 23 was used to carry 
out docking simulation for the rest of the entries in the 
ensemble of crystallographic structures (ensemble docking).  

3.2. Statistical Analysis of Structural Parameters 

 Linking structural parameters and model quality is a 
common procedure in macromolecular X-ray crystallography 
[34-36]. On the other hand, linking structural parameters and 

docking results is rare [15]. Analysis of the correlation 
between docking RMSD and structural parameters is 
intended to identify key features that may influence docking 
results. We considered structural parameters statistically 
significant if the p-value1 < 0.05 (p-value1 is the p-value for 
Spearman's correlation). Only the top-ranked structural 
parameter is discussed here. 
 The lowest p-value was observed for solvent content 
parameter (ρ= -0.247 and p-value1 < 0.029) (supplementary 
material 3). The scatter plot for solvent content vs docking 
RMSD is shown Fig. (2). Since the value of ρ= -0.247, it 
indicates only a weak correlation between the solvent 
content and docking RMSD. It is tempting to speculate, that 
this correlation may be attributable in part to the fact that 
higher solvent content contributed positively to the ligand 
diffusion in the preparation of protein crystals. It was 
observed in crystal soaking experiments, that the ligand-
binding process is facilitated in high-solvent protein crystals, 
which allows high occupation of the binding pocket by the 
ligand [37]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Scatter plot for solvent content vs docking RMSD. 

3.3. Ensemble Docking  

 The structures in this data set have been employed in a 
previous docking study [38], which allows us to carry out 
comparative analysis. For this data set, our results indicated 
docking accuracies of 64.024 % and 64.939 %, for DA1(2,3) 
and DA2(2,3,4), respectively. These results are higher than 
docking accuracy (DA1) reported for the same data set [38]. 
Table 3 shows the analysis of the correlation between 
scoring functions and docking RMSD for all 82 
crystallographic structures in the data set. The highest 
correlation coefficients (ρ= 0.736 and p-value1 < 0.001; R2 
=0.349 and p-value2 < 0.001 ) were observed for MolDock 
Score (Fig. (3)). The docking RMSD for the lowest value of 
MolDock Score is 0.678 Å, better than the mean docking 
RMSD (1.728 Å) described for a previous study [38] that 
used the following programs: Glide (Schrödinger, 
http://www.schrodinger.com/), Gold [39]; Autodock [40], 
and Audodock Vina [41]. 
 

EF =

Ha
Ht

a / N
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Table 3. Ensemble docking results. 

Score ρ  p-value1 R2 p-value2 

Plants -0.192 8.437.10-02 0.125 1.140.10-03 

MolDock 0.736 3.454.10-15 0.349 5.272.10-09 

Re-rank  0.450 2.203.10-05 0.107 2.671.10-03 

Interaction  0.680 2.201.10-12 0.312 4.905.10-08 

Co-factor  -0.003 9.776.10-01 0.001 8.104.10-01 

Protein  0.676 3.048.10-12 0.315 4.215.10-08 

Internal  0.021 8.494.10-01 0.001 7.583.10-01 

Electro  -0.008 9.432.10-01 0.003 6.270.10-01 

Electro Long -0.052 6.398.10-01 0.025 1.520.10-01 

H-Bond  0.157 1.602.10-01 0.007 4.453.10-01 

LE1  0.619 5.669.10-10 0.063 2.308.10-02 

LE3  0.637 1.277.10-10 0.127 1.028.10-03 

Docking  -0.192 8.437.10-02 0.125 1.140.10-03 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Scatter plot for MolDock score vs docking RMSD. 

3.4. Scoring Functions  

 Analysis of correlation coefficients between scoring 
functions and log(Ki) for data set is shown in Table 4.  
 The highest correlation was observed for MolDock Score 
(ρ= 0.736 and p-value1 < 0.001, R2 = 0.349 and p-value2 < 
0.001). This correlation is higher than a recently published 
study [38] (ρ ranging from -0.1382 to +0.0954 and R2 
ranging from 0.005863 to 0.015903), involving the same 
docking programs previously mentioned [39-41]. 
 In addition, we also applied the polynomial scoring 
function methodology to data set. Table 5 summarizes the 
results. The best result was obtained for polynomial equation 
110 with ρ= 0.56 (p-value < 0.001) for the training set (57 
structures) and ρ = 0.435 (p-value = 0.02975) for a test set 
(25 structures). Fig. (4) shows the scatter plot for polynomial 
equation 110 vs log(Ki), with training set data.  
 

Table 4. Correlation between scores and log(Ki). 

Score ρ  p-value1 R2  p-value2 

MolDock  0.736 3.454.10-15 0.349 5.272.10-09 

Re-rank  0.450 2.203.10-05 0.107 2.671.10-03 

Interaction  0.680 2.201.10-12 0.312 4.905.10-08 

Co-factor  -0.003 9.776.10-01 0.001 8.104.10-01 

Protein  0.676 3.048.10-12 0.315 4.215.10-08 

Internal  0.021 8.494.10-01 0.001 7.583.10-01 

Electro  -0.008 9.432.10-01 0.003 6.270.10-01 

Electro Long  -0.052 6.398.10-01 0.025 1.520.10-01 

H-bond  0.157 1.602.10-01 0.007 4.453.10-01 

LE1  0.619 5.669.10-10 0.063 2.308.10-02 

LE3  0.637 1.277.10-10 0.127 1.028.10-03 

 
 Below we have polynomial equation 110, with 
coefficients determined by regression analysis, 

 
 
 

 
 

 The polynomial equation 110 uses Electro Score, 
(MolDock Score).(Interaction Score), (Interaction 
Score).(Electro Score), (MolDock Score)2 and (Interaction 
Score)2 functions as independent variables. The highest 
coefficient in the regression model was obtained for Electro 
Score, which considers short-range interactions (interatomic 
distance < 4.5 Å)[20]. In polynomial equation 110 the 
Electro Score is the second term in equation (8), MolDock 
Score is defined in the equation (7). The interaction score is 
the total interaction energy between the ligand and the 
protein, as defined in the equation (8). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Scatter plot for predicted and experimental binding 
affinity. 

score110 =  1.603905  -0.006304.(Electro Score) 

-0.005256.(MolDock Score).(Interaction Score) 
- 0.000028.(Interaction Score).(Electro Score) 

+  0.002801.(MolDock Score2)2  

+  0.002439.(Interaction  Score)2
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 The prevalence of electrostatic intermolecular 
interactions may be due to the presence of charged residues 
in the binding pocket (Arg 143, Gln 192, and Asp 189), as 
shown in Fig. (5). It has been shown the importance of 
electrostatic interactions such as dipolar interactions for 
ligand binding [33]. In addition, analysis of several potent 
factor Xa inhibitors [33, 42, 43] indicate basic amine 
residues to fill this binding pocket which, in protonated 
form, are implicated in efficient cation-π interactions 
involving residues Tyr 99, Phe 174, and Trp 216 as shown in 
Fig. (5). 
 
 
 
 
 
 
 
 
 
 
Fig. (5). Residues involved in intermolecular electrostatic 
interactions for factor Xa. 

 We built a data set with the ligands identified in the 82 
complex structures of the Xa data set as actives and added 
738 decoy ligands randomly selected from DUD-E [13] 
database to generate a data set with actives and decoys. This 
data set was used to run a small VS using MVD (docking 
protocol 23). Table 6 shows the statistical analysis of VS 
results. If we consider the previous results, we could say that 
polynomial equation 110 shows a better overall performance 
when compared with original scoring functions shown in 
Table 4. Fig. (6) shows ROC curve for polynomial equation 
110. Furthermore, equation 110 shows a better performance 
compared to the previously published docking results (EF1 = 
14.6 and EF20 = 3.8) [44]. 

4. CONCLUSION 

 The big data generated during protein-ligand docking 
simulations lacked an integrated computational tool for 
statistical analysis docking results, influence of structural 
parameters on docking results, and scoring function 
performance [44]. Here we described SAnDReS, an 
integrated computational environment for statistical analysis 
of docking results and development of scoring functions. 
SAnDReS was written in Python 3 using scientific 
computing libraries. Application of SAnDReS to analyze 
docking results for structures in a docking benchmark was 
able to generate high-quality plots for docking results, which  
 

Table 5. Results for training and test sets. 

Score ρ  (training set) p-value (training set) ρ  (test set) p-value (test set) 

MolDock  0.160 2.335.10-01 0.396 4.995.10-02 

Re-rank  0.181 1.766.10-01 0.333 1.038.10-01 

Interaction  0.190 1.574.10-01 0.174 4.055.10-01 

Co-factor  0.140 2.999.10-01 0.024 9.087.10-01 

Protein  0.140 2.976.10-01 0.141 5.005.10-01 

Internal  -0.005 9.696.10-01 0.079 7.077.10-01 

Electro  -0.083 5.370.10-01 -0.325 1.132.10-01 

Electro Long  0.075 5.794.10-01 -0.231 2.666.10-01 

H-bond  0.129 3.390.10-01 -0.127 5.463.10-01 

LE1   0.004 9.759.10-01 0.466 1.882.10-02 

LE3   0.151 2.612.10-01 0.296 1.507.10-01 

Polscore #38  0.525 2.809.10-05 0.193 3.546.10-01 

Polscore #506  0.600 8.166.10-07 0.044 8.364.10-01 

Polscore #442  0.500 7.479.10-05 0.032 8.795.10-01 

Polscore #510  0.539 1.539.10-05 0.077 7.159.10-01 

Polscore #110  0.560 5.920.10-06 0.435 2.975.10-02 

Polscore #126  0.561 5.624.10-06 0.317 1.228.10-01 

Polscore #422  0.499 7.870.10-05 0.306 1.362.10-01 

Polscore #166  0.519 3.576.10-05 0.226 2.782.10-01 

Polscore #294  0.520 3.391.10-05 0.226 2.782.10-01 

Polscore #478  0.574 3.109.10-06 0.049 8.150.10-01 
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Fig. (6). Receiver operating characteristic curve for Xa data set. 

 
facilitates analysis of docking results. In addition, SAnDReS 
was able to identify the correlation between structural 
parameters and docking results. In this study, we identified 
the correlation of unexpected structural parameters such 
crystal solvent content with docking RMSD. In addition, 
SAnDReS is able to build new polynomial scoring functions 
to predict binding affinity with better performance than well-

established scoring functions such the ones available in 
Autodock, Autodock Vina, Gold, Glide, and Molegro Virtual 
Docker. SAnDReS is a free software that can be used to 
analyze docking results, not only for the coagulation factor 
Xa described here, but also for any ensemble of protein 
structures. Due to the importance of docking results for the 
initial stages of drug discovery, we believe that SAnDReS is 
a computational tool with potential of improve accuracy in 
docking projects. Being used in the analysis of the docking 
results and/or employed in generation of new scoring 
functions to predict binding affinity tailored to the biological 
system under study. 

ABBREVIATIONS 

AUC = Area under curve 
AU = Arbitrary unit 
CSAR = Community-Structure Active Resource 
CSV = Comma separated values 
DUD-E = Directory of useful decoys, enhanced 
EC = Enzyme classification 
EC50 = Half maximal effective concentration 
EF = Enrichment factor 
FPR = False positive rate 

Table 6. Statistical analysis of virtual screening results. 

Scores AUC (%) EF1 EF2 EF5 EF10 EF20 

MolDock  86.475 0.000 0.000 24.167 10.500 4.909 

Re-rank  80.622 0.000 0.000 35.556 11.026 5.185 

Interaction  88.539 0.000 70.000 58.333 20.370 5.769 

Co-factor  37.646 0.000 0.000 3.667 8.222 3.226 

Protein  88.739 0.000 0.000 58.333 20.370 5.769 

Internal  57.170 1.429 0.667 0.789 1.081 1.156 

Electro  55.076 16.667 6.000 12.778 18.276 5.327 

Electro Long  58.650 6.000 6.000 3.667 4.386 5.619 

H-bond  36.409 0.000 0.667 0.250 0.649 0.649 

LE1  74.012 1.429 4.545 4.138 3.443 3.016 

LE3 68.126 0.000 0.000 2.424 3.443 2.519 

Polscore #38 67.762 0.000 150.0 14.118 6.735 2.813 

Polscore #506 88.294 0.000 70.0 58.333 20.370 5.769 

Polscore #442 42.792 0.000 0.000 0.000 0.000 0.123 

Polscore #510 13.937 0.000 0.000 0.000 0.000 0.000 

Polscore #110 85.599 16.667 43.333 21.538 9.070 4.909 

Polscore #126 85.683 16.667 43.333 21.538 9.070 4.909 

Polscore #422 13.905 0.000 0.000 0.000 0.000 0.000 

Polscore #166 85.662 0.000 0.000 21.538 10.000 4.775 

Polscore #294 68.592 0.000 150.0 15.625 6.735 2.913 

Polscore #478 13.950 0.000 0.000 0.000 0.000 0.000 
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Kd = Dissociation constant 
Ki = Inhibition constant 
IC50 = Half-maximal inhibitory concentration 
LE = Ligand Efficiency 
MVD = Molegro virtual docker 
PDB = Protein Data Bank 
p-value1 = P-value for Spearman's rank correlation 

coefficient (ρ) 
p-value2 = P-value for Pearson's correlation 

coefficient (R) 
RMSD = Root-mean-square deviation 
ROC = Receiver operating characteristics 
SAnDReS = Statistical analysis of Docking results and 

Scoring functions 
SDF = Structure data format 
TPR = True positive rate 
VS = Virtual screening 
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