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1. Conventions and Availability 

This User Guide shows how to install and use the attributes of the SFSXplorer program 

(Version 1.0.0). This guide includes the capabilities of the program, how to apply these 

capabilities, and how to install SFSXplorer on Linux.  

Here, we have the following typographical conventions:  

 

Arial font with italic 

 

Indicates filenames and folders (directories) in the main text. 

 

Courier New font with Italic 

 

Used for Linux commands, PDB (Protein Data Bank) listings, command lines, and data 

to be typed by the user. 

 

SFSXplorer is open-source software and freely distributed under GNU General Public 

License v3.0 (GPL-3.0 License). Its code is available to download on GitHub 

(https://github.com/azevedolab/SFSXplorer). 

 

In the following sections, we describe the installation guidelines and three tutorials 

showing how to use SFSXplorer to explore the scoring function space (SFS). 

 

  

https://github.com/azevedolab/SFSXplorer
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2. Introduction 

Scoring Function Space Explorer (SFSXplorer) draws inspiration from the studying of 

several protein systems we have been working on in the last decades. These projects 

began in the 1990s with pioneering research focused on intermolecular interactions 

between cyclin-dependent kinase (CDK) (EC 2.7.11.22) and inhibitors (de Azevedo et 

al., 1996; de Azevedo et al., 1997).  

SFSXplorer is a free and open-source (GPL-3.0 License) computational environment for 

calculating energy terms based on atomic coordinates in the PDBQT format. We 

developed SFSXplorer using Python 3 programming language and SciPy, NumPy, 

Scikit-Learn (Pedregosa et al., 2011), and Matplotlib libraries as a computational tool to 

explore the Scoring Function Space (SFS) (Ross et al., 2013; Heck et al., 2017; 

Bitencourt-Ferreira & de Azevedo, 2019; Veríssimo et al., 2022).  

We could use SFSXplorer with SAnDReS (Xavier et al., 2016; Bitencourt-Ferreira & de 

Azevedo, 2019) to generate machine-learning models to predict binding affinity based 

on the atomic coordinates of protein-ligand complexes. SAnDReS 2.0 brings the most 

advanced tools for protein-ligand docking simulation and machine-learning modeling. 

We have the newest version of AutoDock Vina (Trott & Olson, 2010; Eberhardt et al., 

2021) available in March 2023 (version 1.2.3) as a docking engine. Also, SAnDReS 2.0 

uses Scikit-Learn to generate machine-learning models. SAnDReS creates a scoring 

function (SF) for a specific protein system with superior performance compared to 

classical SFs. In summary, SAnDReS makes it possible for you to design an SF 

adequate to the protein system of your interest. 

You need Python 3 installed on your computer to run SFSXplorer. Also, you need 

Matplotlib, NumPy, Scikit-Learn, and SciPy. You can make the installation faster by 

installing Anaconda. 
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3. Exploring the Scoring Function Space with SFSXplorer 

SFSXplorer calculates intermolecular energy terms based on the atomic coordinates of 

protein-ligand structures. We use structures in the PDBQT format to calculate the energy 

terms. We have the following expressions for intermolecular energy terms calculated by 

SFSXplorer. 

 

        (Equation 1) 

 

 

        (Equation 2) 

 

 

        (Equation 3) 

 

 

   

 (Equation 4) 

 

Equation 1 calculates the van der Walls potential using an n1/m1 potential. We have the 

conventional Lennard-Jones potential with n1 = 12 (repulsion term) and m1 = 6 

(attraction term). In all the above equations, rij represents the distance between atoms 

from the ligand and protein. SFSXplorer calculates van der Waals energy terms following 

this pattern: v_VDW_n1_m1. Equation 2 determines the hydrogen bond interaction, and 

it follows an n2/m2 potential, we have terms written as follows: v_HB_n2_m2. The third 

equation is a Coulomb potential for atomic partial charges qi and qj. In equation 3, (rij) 

indicates the permittivity function. We employ the partial equalization of orbital 

electronegativity (PEOE) algorithm (Gasteiger & Marsili, 1980) for the calculation of 

partial charges. 

The fourth equation accounts for the desolvation potential and considers the volume of 

atoms (Vi or Vj) multiplied by a solvation parameter (Si or Sj), and an exponential function 

with a distance weight of σ = 3.5 Å (Morris et al., 2009). SFSXplorer generates 

desolvation energy terms following this pattern: v_Desol_n3_m3_σ. 

The exponents n1, m1, n2, m2, m3, and n3 are all integers. We employ the exponents 

m3 and n3 on the desolvation energy term (see Equation 4). We may vary these 

exponents to explore larger regions of the SFS. The parameters (Aij, Bij, Cij, Dij, Vi, Vj, Si, 

and Sj) are taken from the AMBER (Cornell et al., 1995; Hornak et al., 2006) and 

AutoDock4 force fields (Morris et al., 1998; Morris et al., 2009).  

𝐸𝑣𝑑𝑤 =∑(
𝐴𝑖𝑗

𝑟𝑖𝑗
𝑛1 −

𝐵𝑖𝑗

𝑟𝑖𝑗
𝑚1)

𝑖,𝑗

 

𝐸𝐻𝐵 =∑(
𝐶𝑖𝑗

𝑟𝑖𝑗
𝑛2 −

𝐷𝑖𝑗

𝑟𝑖𝑗
𝑚2)

𝑖,𝑗

 

𝐸𝐸𝑙𝑒𝑐 =∑
𝑞𝑖𝑞𝑗

𝜀(𝑟𝑖𝑗)𝑟𝑖𝑗𝑖,𝑗

 

𝐸𝐷𝑒𝑠𝑜𝑙∑(𝑆𝑖𝑉𝑗 + 𝑆𝑗𝑉𝑖)𝑒
(
−𝑟𝑖𝑗

𝑛3

2𝜎𝑚3
⁄ )

𝑖,𝑗
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Estimation of (rij) for protein-ligand structure is still a challenge from the computational 

point of view (Bitencourt-Ferreira & de Azevedo, 2021). In the original force field, (rij) is 

approached by a sigmoidal distance-dependent (r) permittivity function. This calculation 

is based on the model proposed by Mehler and Solmajer (Mehler & Solmajer, 1991). The 

equation of the Mehler-Solmajer is as follows, 

 

𝜀(𝑟) = 𝐴 +
𝐵

1+𝑘𝑒−𝜆𝐵𝑟
   (Equation 5) 

In the implementation of equation (5), the constants have the following values: B = r - 

A; r (the relative permittivity constant of bulk water at 25˚C) = 78.4; A = -8.5525, λ = 

0.003627 and k = 7.7839 (standard permittivity function parameters). Modeling 

permittivity using a fixed value of relative permittivity constant of bulk water of 78.4 is 

suitable for describing dielectric properties of bulk water in studies of equilibrated protein 

systems (Li et al., 2013). Nevertheless, the optimal value of the permittivity is still a 

challenge from the computational point of view (Kato et al., 2006). This variation is 

indicated by the use of several relative permittivity values in various studies (Kollman et 

al., 2000; Gouda et al., 2003; Dominy et al., 2004; Mobley et al., 2008; Vicatos et al., 

2009; Genheden & Ryde, 2012; Chakravorty et al., 2020). SFSXplorer can vary 

permittivity function parameters and the expression of the function, not limiting to the 

original sigmoidal distance-dependent permittivity function. We may try a hyperbolic 

tangent and a combination of a sigmoidal and a hyperbolic tangent.  

Fixing the values of A = -8.5525, λ = 0.003627, k = 7.7839, and varying the values of the 

relative permittivity constant of bulk water at 25˚C may add flexibility in the calculation of 

electrostatic energetics that could capture the specificity of a protein system that is not 

feasible by the use an overall expression as established in equation 3 with fixed a set of 

parameters. When generating electrostatic energy terms, SFSXplorer creates columns 

with headers identifying the values of r, A, , and k. For instance, in v_Elec_Log_-

8.5525_78.4_7.7839_0.003627, we have A = -8.5525, r = 78.4, k = 7.7839, and λ = 

0.003627. The Log string indicates a logarithmic function for (r). 
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4. Installing 

I developed SFSXplorer on Linux and described installation and tutorials running on 

Linux.  

You should type all commands shown here in a Linux terminal. The easiest way to open 

a Linux terminal is to use the Ctrl+Alt+T key combination. 

 

Step 1. Download Anaconda Installer for Linux 

(https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh) or newer. 

Go to the directory where you have the installer file and type the following commands: 

 
chmod u+x Anaconda3-2021.11-Linux-x86_64.sh 

./Anaconda3-2021.11-Linux-x86_64.sh 

 

Follow the instructions of the installer. 

 

Step 2. To run SFSXplorer properly, you need Scikit-Learn 1.2.2. To be sure you have 

version 1.2.2, open a terminal, and type the following commands: 

 

python3 -m pip uninstall scikit-learn  

python3 -m pip install scikit-learn==1.2.2 

 

Step 3. Download SFSXplorer (https://azevedolab.net/resources/sfs.zip). Copy the sfs 

zipped directory (sfs.zip) to wherever you want it and unzip the zipped directory. 

Type the following command: 

 

unzip sfs.zip 

 

Now you have SFSXplorer ready to run. Please see the following tutorials for details 

about input files and commands to run it. 

 

  

https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh
https://azevedolab.net/resources/sfs.zip
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5. Tutorial 1. CDK2 with IC50 Data (Model 1) 

In this tutorial, we will generate energy terms calculated using previously defined 

equations 1-5 with n1 = 12, m1 = 6, n2 = 12, m2 = 10, m3 = 2, n3 = 2, σ = 3.5 Å, and 

standard permittivity function parameters (B = r – A, r = 78.4, A = -8.5525, λ = 0.003627, 

and k = 7.7839). We will use these terms as features to generate machine-learning 

models to predict binding affinity for cyclin-dependent kinase 2 (CDK2). CDK2 is a 

protein target for the development of anticancer drugs (Said et al., 2022). CDK2 has 

hundreds of crystallographic structures available in the PDB, many of them complexed 

with inhibitors for which binding affinity data is available. We focus on CDK2 structures 

with half-maximal inhibitory concentration (IC50) data with ATP-competitive inhibitors.  

We consider that you have successfully installed SFSXplorer as described in the 

previous section (Section 4). In this tutorial, I used the SFSXplorer installed on 

home/walter/sfs/. Consider your specific folders when typing the following 

commands to run SFSXplorer. 

 

Open a Linux terminal and cd to the sfs directory. Type the following commands: 
 
cd /home/walter/sfs 

 

It is necessary to use the directory where you have SFSXplorer on your computer! 

 

Note. After the SFSXplorer installation, we have the following folders in the sfs directory: 

datasets, misc, plots, and SFSXplorer. The last folder has Python codes used by 

SFSXplorer. We find auxiliary files necessary to run SFSXplorer in the misc folder. We 

keep the project directories in the datasets folder, one project directory for each system 

(e.g., SFSXplorer_Tutorial_01). 
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5.1. Tutorial 1. Setup 

Here, we will download a dataset and define the project directory. This project directory 

is where SFSXplorer keeps all files generated during its execution. 

To download the data necessary to run this tutorial, click on the following link: 

https://azevedolab.net/resources/SFSXplorer_Tutorial_01.zip. Unzip the zipped folder 

and copy it to sfs/datasets. 

After copying the project directory, we may open the folder. We have the following folder 

and files: pdbqt, IC50.csv, ml_par.csv, pdb_codes.csv, sfs_01.in, stats_01.csv. The 

pdbqt folder has all ligands and protein structures for the dataset. We generated these 

PDBQT files using SAnDReS. We may use AutoDockTools4 (Morris et al., 2009) to 

create PDBQT files or any other software to generate them. The only condition is to have 

the ligand in a file named lig.pdbqt and the protein in a file named receptor.pdbqt for 

each structure. In the pdbqt folder, we have one directory for each structure. For this 

dataset, we have 104 directories in the pdbqt folder. It follows the list of PDB access 

codes used in this dataset. 

 
3IG7,3WBL,2VTH,3IGG,2VTA,2VTP,2VTO,2VTN,2VTM,3R8V,2VTL,3R8U,2VTI

,4LYN,3UNJ,3QTZ,3QTX,3QTW,4EZ3,3TIY,3QTU,1PXL,3QTS,3QTR,3QTQ,3QU

0,2W17,3TI1,1Y91,1G5S,1PXK,2W1H,5D1J,3EZV,2W06,2W05,3EZR,2A4L,1V

1K,3LFN,3QQK,2R64,3RAH,2B52,1W0X,2B53,2B55,1R78,2C6I,2C6K,3RAL,2

C6L,2C6M,3RPY,3RPV,2BTR,1P2A,2BTS,3FZ1,2UZO,2UZN,2R3M,2R3N,2R3O,

3S2P,2R3G,2C5Y,2R3H,2R3I,2A0C,3S1H,1DI8,4ERW,3SQQ,3S0O,3PJ8,2DUV

,3RNI,4RJ3,1KE5,1KE6,1KE7,1KE8,3RMF,1VYZ,3PY1,3PXZ,4GCJ,2VV9,3NS

9,3RK9,3RK7,3RK5,3RKB,2VTT,2VTS,2VTQ,3R8Z,1OIQ,1OIR,3R9D,3RJC,3R

9N,2DS1 

 
We describe the input files (IC50.csv and sfs_01.in) in section 5.2. We use ml_par.csv 

and stats_01.csv files to define the parameters for machine-learning modeling with 

SAnDReS (section 5.4). You may use the ml_par.csv and stats_01.csv files provided in 

this tutorial. Replace the original files found in sandres2/misc/data/ with the ones found 

in the SFSXplorer_Tutorial_01 folder. Now, we finished the Setup for this tutorial.   

  

https://azevedolab.net/resources/SFSXplorer_Tutorial_01.zip
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5.2. Tutorial 1. Inputs 

In this part, we will prepare the input files necessary to run SFSXplorer. In the IC50.csv 

generated using SAnDReS, we have experimental ligand data extracted from the PDB 

and some initial features. In the following figure, we have the first rows and columns of 

the IC50.csv file. 

 

 

 
 

Figure 1. Partial view of the IC50.csv file. 

 

The sfs_01.in file has all the necessary information to calculate the features using 

SFSXplorer. In the following, we have all commands of this file. All lines starting with # 

are commentaries and ignored by SFSXplorer. 
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# Set up general parameters for SFSXplorer 

dataset_dir,/home/walter/sfs/datasets/SFSXplorer_Tutorial_01/pdbqt/ 

ligands_in,/home/walter/sfs/datasets/SFSXplorer_Tutorial_01/IC50.csv 

scores_out,/home/walter/sfs/datasets/SFSXplorer_Tutorial_01/bind_IC50.csv 

# For van der Waals potential m = 6 (attractive) 

pot_VDW_m_min,6      # Initial value of exponent m (6) (integer) 

pot_VDW_m_max,6      # Final value of exponent m (6) (integer) 

# For van der Waals potential n = 12 (repulsion) 

pot_VDW_n_min,12     # Initial value of exponent n (12) (integer) 

pot_VDW_n_max,12     # Final value of exponent n (12) (integer) 

# For hydrogen-bond potential m = 10 (attractive) 

pot_HB_m_min,10      # Initial value of exponent m (10) (integer) 

pot_HB_m_max,10      # Final value of exponent m (10) (integer) 

# For hydrogen-bond potential n = 12 (repulsive) 

pot_HB_n_min,12      # Initial value of exponent n (12) (integer) 

pot_HB_n_max,12      # Final value of exponent n (12) (integer) 

# For electrostatic potential (set up parameters for arrays) 

lambda_i,0.003627    # Initial float of lambda used in dielectric permittivity 

lambda_f,0.003627    # Final float of lambda used in dielectric permittivity 

n_lambda,1           # Number of elements of lambda used in dielectric permittivity 

k_i,7.7839           # Initial float of k used in dielectric permittivity 

k_f,7.7839           # Final float of k used in dielectric permittivity 

n_k,1                # Number of elements of k used in dielectric permittivity 

A_i,-8.5525          # Initial float of A used in dielectric permittivity 

A_f,-8.5525          # Final float of A used in dielectric permittivity 

n_A,1                # Number of elements of A used in dielectric permittivity 

epsilon0_i,78.4      # Initial float of epsilon0 

epsilon0_f,78.4      # Final float of epsilon0 

n_epsilon0,1         # Number of elements of epsilon0 (integer) 

# For desolvation potential (set up parameters for arrays) 

m_desol_i,2          # Initial value of exponent m (integer) 

m_desol_f,2          # Final value of exponent m (integer) 

n_m_desol,1          # Number of elements of exponent m (integer) 

n_desol_i,2          # Initial value of exponent n (integer) 

n_desol_f,2          # Final value of exponent n (integer) 

n_n_desol,1          # Number of elements of exponent n (integer) 

sigma_desol_i,3.5    # Initial float of sigma used in desolvation potential 

sigma_desol_f,3.5    # Final float of sigma used in desolvation potential 

n_sigma_desol,1      # Number of elements of sigma used in desolvation potential 

# 

# Define parameters for statistical analysis 

# Define string header with experimental data 

exp_string,pIC50 

# Define features 

n_features_in,22 

features_in,Ligand Occupation Factor,Torsions,Q,Average Q,Ligand B-factor(A2),Receptor 

B-factor(A2),B-factor ratio (Ligand/Receptor),C,N,O,S,Affinity(kcal/mol),Gauss 1,Gauss 

2,Repulsion,Hydrophobic,Hydrogen,Torsional,v_VDW_12_6,v_HB_12_10,v_Elec_Log_-

8.5525_78.4_7.7839_0.003627,v_Desol_2.0_2.0_3.5  

 

 
The first command line has the keyword dataset_dir which indicates the directory 

where we have the dataset (pdbqt folder). In the following two lines, we define where we 

have the ligand data (ligands_in) and the output ligand file (scores_out). Make sure 

to have the right folder and file for each one. 

Next, we have the command lines for the exponents of the van der Waals potential. In 

the study of intermolecular interactions, we may model van der Waals contacts as a 

Lennard-Jones potential (12/6 potential, n1 = 12 and m1 = 6). To keep these exponents, 

we have the following lines. 

 

pot_VDW_m_min,6      # Initial value of exponent m (6) (integer) 

pot_VDW_m_max,6      # Final value of exponent m (6) (integer) 

pot_VDW_n_min,12     # Initial value of exponent n (12) (integer) 

pot_VDW_n_max,12     # Final value of exponent n (12) (integer) 

 

The keywords pot_VDW_m_min and pot_VDW_m_max indicate the minimum and 
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maximum values for m1. When they are the same, we do not vary this exponent. In the 

above definition, we fixed m1 = 6 (attraction term of the Lennard-Jones potential). 

The following keywords pot_VDW_n_min and pot_VDW_n_max represent the minimum 

and maximum values for n1. Here we have n1 = 12 (repulsion term of the Lennard-Jones 

potential).  

For hydrogen-bond interactions, we set up the following lines. 

 

pot_HB_m_min,10      # Initial value of exponent m (10) (integer) 

pot_HB_m_max,10      # Final value of exponent m (10) (integer) 

pot_HB_n_min,12      # Initial value of exponent n (12) (integer) 

pot_HB_n_max,12      # Final value of exponent n (12) (integer) 

 
The keywords pot_HB_m_min and pot_HB_m_max specify the minimum and maximum 

values for m2. As previously highlighted, when they are the same, no variation of this 

exponent. In the above definition, we fixed m2 = 10. 

 
The following keywords pot_HB_n_min and pot_HB_n_max show the minimum and 

maximum values for n2. Here we have n2 = 12. 

For the permittivity function (rij), we fixed values using the following lines. 

 

lambda_i,0.003627    # Initial float of lambda used in dielectric permittivity 

lambda_f,0.003627    # Final float of lambda used in dielectric permittivity 

n_lambda,1           # Number of elements of lambda used in dielectric permittivity 

k_i,7.7839           # Initial float of k used in dielectric permittivity 

k_f,7.7839           # Final float of k used in dielectric permittivity 

n_k,1                # Number of elements of k used in dielectric permittivity 

A_i,-8.5525          # Initial float of A used in dielectric permittivity 

A_f,-8.5525          # Final float of A used in dielectric permittivity 

n_A,1                # Number of elements of A used in dielectric permittivity 

epsilon0_i,78.4      # Initial float of epsilon0 

epsilon0_f,78.4      # Final float of epsilon0 

n_epsilon0,1         # Number of elements of epsilon0 (integer) 

 

In the above lines, we have the same initial and final values for lambda (lambda_i and 

lambda_f) and n_lambda indicates the number of values for lambda, in this case, is 

one. The term k uses k_i and k_f with the same initial and final values. The term n_k 

indicates that we have only one value for k, so variation here. The keywords A_i and 

A_f indicate the initial and final values for the term A. The term n_A determines the 

number of values for A. Finally, the keywords epsilon0_i and epsilon0_f are the 

same and indicate 78.4 with n_epsilon0 equal to 1. 

The following lines define the parameters for the calculation of the desolvation potential. 

 

m_desol_i,2          # Initial value of exponent m (integer) 

m_desol_f,2          # Final value of exponent m (integer) 

n_m_desol,1          # Number of elements of exponent m (integer) 

n_desol_i,2          # Initial value of exponent n (integer) 

n_desol_f,2          # Final value of exponent n (integer) 

n_n_desol,1          # Number of elements of exponent n (integer) 

sigma_desol_i,3.5    # Initial float of sigma used in desolvation potential 

sigma_desol_f,3.5    # Final float of sigma used in desolvation potential 

n_sigma_desol,1      # Number of elements of sigma used in desolvation potential 
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The m_desol_i and m_desol_f define the initial and final values of the exponent m. 

The n_m_desol shows the number of elements. In this tutorial, we have only one 

element with m = 2. The same definitions for the exponent n (n_desol_i, n_desol_f, 

and n_n_desol). Finally, we have the definition of sigma, we define the initial 

(sigma_desol_i) and final (sigma_desol_f) as 3.5 with one calculation 

(n_sigma_desol,1).  

As we may have figured out, we are free to play around with these terms. In this first 

tutorial, we have a conservative approach keeping the standard exponents and 

parameters found in the original AMBER (Cornell et al., 1995; Hornak et al., 2006) and 

AutoDock4 force fields (Morris et al., 1998; Morris et al., 2009). But with SFSXplorer we 

are free to investigate the variation of exponents and parameters (see tutorial 2). We try 

to find an adequate set of features to create a machine-learning model. 

The following line defines the header of the column holding the experimental affinity 

(exp_string). We have the following line. 

 

exp_string,pIC50 

 

The last two commands define the number of features (n_features_in) (terms used 

to evaluate the correlation with the experimental binding affinity) (features_in) and 

the labels of these features as follows. These labels are the chosen headers found in the 

scores_out.csv file. 

 

n_features_in,22 

features_in,Ligand Occupation Factor,Torsions,Q,Average Q,Ligand B-factor(A2),Receptor B-

factor(A2),B-factor ratio (Ligand/Receptor),C,N,O,S,Affinity(kcal/mol),Gauss 1,Gauss 

2,Repulsion,Hydrophobic,Hydrogen,Torsional,v_VDW_12_6,v_HB_12_10,v_Elec_Log_-

8.5525_78.4_7.7839_0.003627,v_Desol_2.0_2.0_3.5 

 

We finished this part of tutorial 1. 
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5.3. Tutorial 1. Running SFSXplorer 

Here, we will run SFSXplorer for the dataset of tutorial 1. To run SFSXplorer open a 

terminal and go to the sfs directory. Then type the following command line: 

 
python3 sfsxplorer.py datasets/SFSXplorer_Tutorial_01/sfs_01.in all > 

datasets/SFSXplorer_Tutorial_01/sfs_01.log & 

 

We previously defined the sfsl_01.in and IC50.csv files.  

The above command line launches SFSXplorer taking sfs_01.in as an input file. 

SFSXplorer generates two output files (bind_IC50.csv and 

bind_IC50_stats_analysis.csv) and a log file (sfs_01.log). The bind_IC50.csv file has the 

same first columns found in the IC50.csv file. SFSXplorer adds the energy terms 

calculated for each structure in the dataset using the definitions read from the sfs_01.in 

file. Figure 2 shows the last columns of the bind_IC50.csv file. SFSXplore calculated the 

terms after the Torsional column. SFSXplorer has a log file (sfs_01.log) where we have 

a brief description of all tasks carried out during its execution.  

 

 

Figure 2. Partial view of the bind_IC50.csv file. 

 

SFSXplorer also generates a file (bind_IC50_stats_analysis.csv) (Figure 3) with the 

statistical analysis of the predictive performance of each feature defined in the sfs_01.in 

file. SFSXplorer defines the file name by taking the file with the energy terms 

(bind_IC50.csv) and adding the following string stats_analysis at the end of the file name. 

SFSXplorer calculates the residual sum of squares (RSS), Pearson (r), and Spearman 

() correlations (Zar, 1972). We also calculate metrics (root mean squared error (RMSE), 

mean absolute error (MAE), and coefficient of determination (R2)) suggested to evaluate 

the predictive performance of machine learning models of biological systems (Walsh et 

al., 2021). 

In the command line, we have the keyword all, which means that SFSXplorer will 
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calculate the energy terms defined in the sfs_1.in file and perform the statistical analysis. 

We may also have the keyword explore (to calculate energy terms only) or stats to 

perform statistical analysis of a previously calculated bind_IC50.csv file. 

 

 

Figure 3. View of the bind_IC50_stats_analysis.csv file. 

 

In summary, to run SFSXplorer we have the following overall command line. 

 
python3 sfsxplorer.py input_file keyword > log_file & 

 

In the above line, input_file has the file defining how to calculate the energy terms 

(e.g., sfs_1.in). The last one (log_file) has the log file. The keyword has the following 

options: all, explore, and stats. We defined these keywords above. 

We finished this part of tutorial 1 here. 
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5.4. Tutorial 1. Machine Learning Modeling 

We will employ SAnDReS 2.0 (Xavier et al., 2016) to create machine learning models 

taking as features the energy terms and descriptors available in the previously generated 

bind_IC50.csv file. Alternatively, we may use Molegro Data Modeller (Thomsen & 

Christensen, 2006) to generate machine learning models or any other machine learning 

program (e.g., Weka) (Trush et al., 2019). We consider that you have SAnDReS 2.0 

installed on your computer (see the following link for more information about SAnDReS 

installation: https://github.com/azevedolab/sandres#readme). 

Open a terminal and go to the directory where you have SAnDReS installed. Type the 

following command. 

 

python3 sandres2.py 

 

If everything goes fine you will have the following window (Figure 4). 

 

Figure 4. The main menu of SAnDReS 2.0. 

 

Now, we enter the project directory. 

 

On the main menu, Click on Setup->Project Directory->Enter Project 

 

SAnDReS will open an editor (Fast Editor), and you should insert the directory where we 

will have all data related to this modeling 

(/home/walter/sfs/datasets/SFSXplorer_Tutorial_01/), as shown in Figure 5. After 

defining the project direct, click on the Save button. Then, click on the Close button. 

 

https://github.com/azevedolab/sandres#readme
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Figure 5. Fast Editor window. 

 

Note. All generated files will be in the project directory. 

 

We have an arsenal of 54 regression methods available in the program SAnDReS to 

generate targeted scoring functions. This freedom to play with the features and 

regression methods makes it possible to explore a wider region of the Scoring Function 

Space (SFS) (Bitencourt-Ferreira et al., 2021), increasing the chances of finding an 

adequate model for our protein system. Some guidelines may help in the definition of the 

number of features, for instance, Gramatica suggests having five observations per 

feature in the scoring function (Gramatica, 2013). 

 

To start exploring the SFS, click on Machine Learning Box->Enter Machine Learning 

Parameters. 

 

SAnDReS opens the ml_par.csv file. In this file, we have the definition of the parameters 

necessary to apply the regression methods available in Scikit-Learn. We show part of 

the ml_par.csv file below.  

 

preprocessing,StandardScaler 

ml_parameters,ml.csv         

scoring_function_file,scores.csv #File with features 

# Set up input parameters 

n_features,7 

features_in,C,v_Desol_2.0_2.0_3.5,Gauss 2,Torsional,N,Gauss 1,v_VDW_12_6 

target_in,pIC50 

test_size_in,0.3 

seed_in,271828 

# Set up regression methods 

mlr_method,AdaBoostRegressor    #AdaBoost Regression             

mlr_method,AdaBoostRegressorCV  #AdaBoost Regression 

 

SAnDReS considers any line starting with # as a comment line. We may place # in any 

position in a line. After # the remaining line is a comment. 
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The line preprocessing,StandardScaler defines the type of preprocessing. 

SAnDReS will scale the data. In the following, we have the definition of the input file with 

all specific parameters necessary to run machine learning methods available in Scikit-

Learn (ml.csv). 

The line scoring_function_file,scores.csv shows a temporary file used during 

regression analysis. You do not need to change it. The next line starts with #. It is a 

comment line. 

The line n_features,7 establishes the number of features for machine learning 

methods. We will not modify it. 

The line features_in,C,v_Desol_2.0_2.0_3.5,Gauss 2,Torsional,N,Gauss 

1,v_VDW_12_6 defines the features (descriptors and energy terms). We need to have 

the number of terms defined in n_features 

The line target_in,pIC50 defines the target variable (experimental binding affinity). 

SAnDReS splits the data into training and test sets. The following line 

test_size_in,0.3 defines the fraction used as a test set. In this tutorial, we have 30 

% of the dataset as a test set. 

The line seed_in,271828 defines an integer used as a seed to generate pseudo-

random numbers. SAnDReS employs these pseudo-random numbers to split the dataset 

into training and test sets. This definition allows us to reproduce the same results. For 

this tutorial, leave it as it is. The next line is a comment line. In the following, we have a 

sequence of 54 regression methods specified in each line, for instance, mlr_method, 

AdaBoostRegressor indicates that SAnDReS will use the AdaBoostRegressor as a 

method for regression. In the above list, we have the first two lines out of 54 representing 

all regression methods available in SAnDReS. If you want to omit any of the methods, it 

is necessary to add # as the first character in the line. You may also just delete the 

undesired method. 

Click on the Save button and the Close button. 

We also need to define the features used for the initial statistical analysis of the predictive 

performance. Click on Edit->Statisitcal Analysis. 

 We will have the Fast Editor with the stats_01.csv file. We define the features for the 

initial evaluation of correlation and other metrics. 

 

exp_string,pIC50 

# Define features 

n_features_in,24 

features_in,Ligand Occupation Factor,Torsions,Q,Average Q,Ligand B-factor(A2),Receptor B-

factor(A2),B-factor ratio (Ligand/Receptor),C,N,O,S,Affinity(kcal/mol),Gauss 1,Gauss 

2,Repulsion,Hydrophobic,Hydrogen,Torsional,v_VDW_12_6,v_HB_12_10,v_Elec_Log_-

8.5525_78.4_7.7839_0.003627,v_Elec_Tanh_-8.5525_78.4_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.003627,v_Desol_2.0_2.0_3.5 

 



17 
 

The line exp_string,pIC50 defines the target variable (experimental data). The 

following line (n_features_in,24) has the number of features. The last line brings a list 

of all features. Leave this file (stats_01.csv) as indicated above. Click on the Save button. 

Then, click on the Close button. We may substitute the original stats_01.csv file (found 

in ~/sandres2/misc/data) with the one found in the zipped folder with the input files for 

this tutorial. 

 

We are ready to generate our machine-learning models. Click on Machine Learning Box-

>For Modeling->Preprocess Data.  

Click on the Yes option. 

After finishing preprocessing the data, we get the following message: 

SAnDReS finished the "Preprocess Data" request! 

 

SAnDReS generated a new file named scores4xtal.csv with scaled data. From now on, 

the machine learning modeling will use the data in this file.  

 

Click on Machine Learning Box->For Modeling->Automatic Generation of PDBs for 

Training and Test Sets. 

Click on the Yes option. After separating the PDB access codes in the files 

pdb_codes_test_set.csv and pdb_codes_training_set.csv, we have the following 

message: 

SAnDReS finished the "Automatic Generation of PDBs for Training and Test Sets" 

request! 

 

Click on Machine Learning Box->For Modeling->Generate Training and Test Sets. 

Click on the Yes option. Now we split the dataset. SAnDReS creates two new files, 

named: scores4xtal_test.csv and scores4xtal_training.csv. We have the following 

message after the creation of both files: 

SAnDReS finished the "Generate Training and Test Sets" request! 

 

Click on Machine Learning Box->For Modeling->Filter Data. 

Click on the Yes option three times for the following files: scores4xtal.csv, 

scores4xtal_test.csv, and scores4xtal_training.csv. In this part, we delete any line for 

which we have features with nan (not a number). 

After eliminating these lines, if necessary, SAnDReS shows the following message: 

SAnDReS finished the "Filter Data" request! 
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Now we determine the metrics between potential features and pIC50. 

Click on Machine Learning Box->For Modeling->Statistical Analysis (Features). 

Click on the Yes option. After generating the 

scores4xtal_test_stats_analysis_features.csv and   

scores4xtal_training_stats_analysis_features.csv. We have the following message: 

SAnDReS finished the "Statistical Analysis (Features)" request! 

 

In these new files, we have the bivariate statistical analysis of potential features carried 

out using Scikit-Learn and SciPy. Figure 6 shows part of 

scores4xtal_test_stats_analysis_features.csv file. From the analysis of the metrics 

shown in Figure 6, we may select a set of features to build our scoring function. Then, 

we edit the ml_par.csv file and change the features_in. If a chosen model does not 

generate an adequate machine learning model, we may repeat the process to create 

other models and select the one with better overall predictive performance. Here, we will 

not change the features.  

 

Figure 6. View of the scores4xtal_test_stats_analysis_features.csv file. 

 

Click on Machine Learning Box->For Modeling->Regression Methods.  

Click on the Yes option. 

SAnDReS starts our exploration of the SFS. It goes into a loop, generating machine-

learning models for all methods we kept in the previously edited ml_par.csv file. For this 

tutorial, we keep them all (the current version has 54 regression methods). For each 

regression method, SAnDReS generates a model stored in the folder named models of 

the project directory. We have these models saved as joblib files. These files allow us to 
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apply previously generated models (.joblib file) to any dataset presented as a CSV file. 

Once generated a machine learning model (.joblib file) we may copy it, keep it on a 

website, or send it by email. Then, we can use it to predict binding affinity using as input 

data any CSV file that has the same features used to generate the machine learning. 

After generating all regression models, we have the following message: 

SAnDReS finished the "Regression Methods" request! 

 

Next, we will use these regression models (.joblib files) and apply them to 

scores4xtal_test.csv and scores4xtal_training.csv files. SAnDReS will add the binding 

affinity values predicted using all regression models as additional columns to the 

scores4xtal_test.csv and scores4xtal_training.csv files. We name all added columns as 

regression methods, e.g., AdaBoostRegressor for a column with binding affinity 

determined using this method. 

Click on Machine Learning Box-> For Modeling->Apply Regression Model. 

 

Click on the Apply button on the pop-up window. After applying all regression models to 

the scores4xtal_training.csv file, we have the following message: 

SAnDReS finished the "Apply Regression Model" request! 

 

Click on the Close button and repeat the same procedure for the scores4xtal_test.csv 

file. In the field Regression Method of the pop-up window, we have the possibility of 

inserting a specific method, instead of asking to add all methods. In this tutorial, we keep 

them all. 

Click on Machine Learning Box->For Modeling->Bivariate Analysis of Regression 

Models. 

Click on the Yes option. After finishing the statistical analysis, we get the following 

message: 

SAnDReS finished the "Bivariate Analysis of Regression Models" request! 

 

SAnDReS performed the statistical analysis and generated the following files: 

scores4xtal_test_stats_analysis_models.csv and 

scores4xtal_training_stats_analysis_models.csv. Figure 7 shows part of the 

scores4xtal_test_stats_analysis_models.csv file. We generated the highest Pearson 

correlation using the PassiveAggressiveRegressorCV.  
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Figure 7. Partial view of the scores4xtal_test_stats_analysis_models.csv file. 

 

Here, we finished this part of tutorial 1. 

 
 
  



21 
 

5.5. Tutorial 1. Statistical Analysis 

In the last part of tutorial 1, we will generate a scatter plot. SAnDReS keeps all graphic 

files in the plots folder of the project directory.  

To create a scatter plot, click on Statistical Analysis->Scatter Plot->Set up Parameters. 

We have a new pop-up window. Add PassiveAggressiveRegressorCV to the Y-axis 

Label field. We have the following window (Figure 8). 

Figure 8. Matplotlib: Visualization with Python menu. 

 

Click on the Apply button. Click on the Close button. 

 

To edit the scatter_plot_par.csv file, click on Statistical Analysis->Scatter Plot->Edit 

Parameters. We have the following pop-up window (Figure 9). We modified x_min_in, 

x_max_in, y_min_in, and y_max_in as indicated below. 

Figure 9. Fast Editor window. 

 

Click on the Save button. Then, click on the Close button. 

To generate the plot, click on Statistical Analysis->Scatter Plot->Generate. 

We have the following pop-up window. 
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Figure 10. Matplotlib: Visualization with Python menu. 

 

Click on the 2D-View button. Click on the Close button. SAnDReS generated the following 

plot. 

 

Figure 11. Scatter plot of PassiveAggressiveRegressorCV vs pIC50. 

 
Click on the Close button. 

We finished generating a scatter plot. We may generate scatter plots using data in the 

CSV files. 

 

Now, let’s save our results as a zipped folder. Click on Setup->Project Directory->Backup 

Current Project. 
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Click on the Yes option. It may take a few minutes. After backing up the current project 

directory, you get the following message: 

Successfully created a backup of the directory 

/home/walter/sfs/datasets/SFSXplorer_Tutorial_01/ 

 

You may delete or unzip this zipped folder using additional options in the Setup menu. 

 

To finish this session, click on Setup->Exit. 

Click on the Yes option. We finished Tutorial 1. 
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6. Tutorial 2. CDK2 with IC50 Data (Model 2) 

In this tutorial, we will generate energy terms varying exponents, permittivity function, 

and desolvation parameters found equations 1-5. We will use the same dataset of CDK2 

structures with IC50 data, but now we will calculate 370 features instead of only 22 used 

in tutorial 1. Using a higher number of features we explore a wider region of the SFS, 

which increases the chance of finding a model with superior predictive performance. 
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6.1. Tutorial 2. Setup 

We proceed as we did for the first tutorial. We download the data from the following link: 

https://azevedolab.net/resources/SFSXplorer_Tutorial_02.zip. Unzip the zipped folder 

and copy it to sfs/datasets.  

Now, we finished the Setup. 

 
 
 
 
  

https://azevedolab.net/resources/SFSXplorer_Tutorial_02.zip
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6.2. Tutorial 2. Inputs 

Now, we will prepare the input files necessary to run SFSXplorer. We will use the same 

bind_IC50.csv file used in tutorial 1. Now. we have a file named sfs_02.in.  

The sfs_02.in file has all the necessary information to calculate the features using 

SFSXplorer. In this new input file (sfs_02.in), we vary the exponents of the van der Waals 

potential (8  n1  16) and (2  m1  10). For hydrogen bond interactions, we employ 

the following ranges: (8  n2  16) and (6  m2  14). For the permittivity function 

parameters, we vary lambda. We will generate five equally spaced values for lambda 

from 0.001787 to 0.003627. For 0 we vary it from 70.0 to 78.4 (five equally spaced 

values).  For desolvation potential, we vary m3 and n3 in the following ranges: (1  n3  

4) and (1  m3  4). These definitions are in the sfs_02.in, as shown on the following 

page. 
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# Set up general parameters for SFSXplorer 

dataset_dir,/home/walter/sfs/datasets/SFSXplorer_Tutorial_02/pdbqt/ 

ligands_in,/home/walter/sfs/datasets/SFSXplorer_Tutorial_02/IC50.csv 

scores_out,/home/walter/sfs/datasets/SFSXplorer_Tutorial_02/bind_IC50.csv 

# For van der Waals potential m = 6 (attractive) 

pot_VDW_m_min,2      # Initial value of exponent m (6) (integer) 

pot_VDW_m_max,10     # Final value of exponent m (6) (integer) 

# For van der Waals potential n = 12 (repulsion) 

pot_VDW_n_min,8      # Initial value of exponent n (12) (integer) 

pot_VDW_n_max,16     # Final value of exponent n (12) (integer) 

# For hydrogen-bond potential m = 10 (attractive) 

pot_HB_m_min,6       # Initial value of exponent m (10) (integer) 

pot_HB_m_max,14      # Final value of exponent m (10) (integer) 

# For hydrogen-bond potential n = 12 (repulsive) 

pot_HB_n_min,8       # Initial value of exponent n (12) (integer) 

pot_HB_n_max,16      # Final value of exponent n (12) (integer) 

# For electrostatic potential (set up parameters for arrays) 

lambda_i,0.001787    # Initial float of lambda used in dielectric permittivity 

lambda_f,0.003627    # Final float of lambda used in dielectric permittivity 

n_lambda,5           # Number of elements of lambda used in dielectric permittivity 

k_i,7.7839           # Initial float of k used in dielectric permittivity 

k_f,7.7839           # Final float of k used in dielectric permittivity 

n_k,1                # Number of elements of k used in dielectric permittivity 

A_i,-8.5525          # Initial float of A used in dielectric permittivity 

A_f,-8.5525          # Final float of A used in dielectric permittivity 

n_A,1                # Number of elements of A used in dielectric permittivity 

epsilon0_i,70.0      # Initial float of epsilon0 

epsilon0_f,78.4      # Final float of epsilon0 

n_epsilon0,5         # Number of elements of epsilon0 (integer) 

# For desolvation potential (set up parameters for arrays) 

m_desol_i,1          # Initial value of exponent m (integer) 

m_desol_f,5          # Final value of exponent m (integer) 

n_m_desol,5          # Number of elements of exponent m (integer) 

n_desol_i,1          # Initial value of exponent n (integer) 

n_desol_f,5          # Final value of exponent n (integer) 

n_n_desol,5          # Number of elements of exponent n (integer) 

sigma_desol_i,2.5    # Initial float of sigma used in desolvation potential 

sigma_desol_f,4.5    # Final float of sigma used in desolvation potential 

n_sigma_desol,5      # Number of elements of sigma used in desolvation potential 

# 

# Define parameters for statistical analysis 

# Define string header with experimental data 

exp_string,pIC50 

# Define features 

n_features_in,370 

features_in,Ligand Occupation Factor,Torsions,Q,Average Q,Ligand B-factor(A2),Receptor 

B-factor(A2),B-factor ratio (Ligand/Receptor),C,N,O,S,Affinity(kcal/mol),Gauss 1,Gauss 

2,Repulsion,Hydrophobic,Hydrogen,Torsional,v_VDW_8_2,v_VDW_8_3,v_VDW_8_4,v_VDW_8_5,v_VDW

_8_6,v_VDW_8_7,v_VDW_8_9,v_VDW_8_10,v_VDW_9_2,v_VDW_9_3,v_VDW_9_4,v_VDW_9_5,v_VDW_9_6,v_

VDW_9_7,v_VDW_9_8,v_VDW_9_10,v_VDW_10_2,v_VDW_10_3,v_VDW_10_4,v_VDW_10_5,v_VDW_10_6,v_VD

W_10_7,v_VDW_10_8,v_VDW_10_9,v_VDW_11_2,v_VDW_11_3,v_VDW_11_4,v_VDW_11_5,v_VDW_11_6,v_VD

W_11_7,v_VDW_11_8,v_VDW_11_9,v_VDW_11_10,v_VDW_12_2,v_VDW_12_3,v_VDW_12_4,v_VDW_12_5,v_V

DW_12_6,v_VDW_12_7,v_VDW_12_8,v_VDW_12_9,v_VDW_12_10,v_VDW_13_2,v_VDW_13_3,v_VDW_13_4,v_

VDW_13_5,v_VDW_13_6,v_VDW_13_7,v_VDW_13_8,v_VDW_13_9,v_VDW_13_10,v_VDW_14_2,v_VDW_14_3,v

_VDW_14_4,v_VDW_14_5,v_VDW_14_6,v_VDW_14_7,v_VDW_14_8,v_VDW_14_9,v_VDW_14_10,v_VDW_15_2,

v_VDW_15_3,v_VDW_15_4,v_VDW_15_5,v_VDW_15_6,v_VDW_15_7,v_VDW_15_8,v_VDW_15_9,v_VDW_15_10

,v_VDW_16_2,v_VDW_16_3,v_VDW_16_4,v_VDW_16_5,v_VDW_16_6,v_VDW_16_7,v_VDW_16_8,v_VDW_16_9

,v_VDW_16_10,v_HB_8_6,v_HB_8_7,v_HB_8_9,v_HB_8_10,v_HB_8_11,v_HB_8_12,v_HB_8_13,v_HB_8_1

4,v_HB_9_6,v_HB_9_7,v_HB_9_8,v_HB_9_10,v_HB_9_11,v_HB_9_12,v_HB_9_13,v_HB_9_14,v_HB_10_6

,v_HB_10_7,v_HB_10_8,v_HB_10_9,v_HB_10_11,v_HB_10_12,v_HB_10_13,v_HB_10_14,v_HB_11_6,v_H

B_11_7,v_HB_11_8,v_HB_11_9,v_HB_11_10,v_HB_11_12,v_HB_11_13,v_HB_11_14,v_HB_12_6,v_HB_12

_7,v_HB_12_8,v_HB_12_9,v_HB_12_10,v_HB_12_11,v_HB_12_13,v_HB_12_14,v_HB_13_6,v_HB_13_7,v

_HB_13_8,v_HB_13_9,v_HB_13_10,v_HB_13_11,v_HB_13_12,v_HB_13_14,v_HB_14_6,v_HB_14_7,v_HB_

14_8,v_HB_14_9,v_HB_14_10,v_HB_14_11,v_HB_14_12,v_HB_14_13,v_HB_15_6,v_HB_15_7,v_HB_15_8

,v_HB_15_9,v_HB_15_10,v_HB_15_11,v_HB_15_12,v_HB_15_13,v_HB_15_14,v_HB_16_6,v_HB_16_7,v_

HB_16_8,v_HB_16_9,v_HB_16_10,v_HB_16_11,v_HB_16_12,v_HB_16_13,v_HB_16_14,v_Elec_Log_-

8.5525_70.0_7.7839_0.001787,v_Elec_Log_-8.5525_70.0_7.7839_0.002247,v_Elec_Log_-

8.5525_70.0_7.7839_0.002707,v_Elec_Log_-8.5525_70.0_7.7839_0.003167,v_Elec_Log_-

8.5525_70.0_7.7839_0.003627,v_Elec_Log_-8.5525_72.1_7.7839_0.001787,v_Elec_Log_-

8.5525_72.1_7.7839_0.002247,v_Elec_Log_-8.5525_72.1_7.7839_0.002707,v_Elec_Log_-

8.5525_72.1_7.7839_0.003167,v_Elec_Log_-8.5525_72.1_7.7839_0.003627,v_Elec_Log_-

8.5525_74.2_7.7839_0.001787,v_Elec_Log_-8.5525_74.2_7.7839_0.002247,v_Elec_Log_-

8.5525_74.2_7.7839_0.002707,v_Elec_Log_-8.5525_74.2_7.7839_0.003167,v_Elec_Log_-

8.5525_74.2_7.7839_0.003627,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Log_-
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8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Log_-

8.5525_78.4_7.7839_0.001787,v_Elec_Log_-8.5525_78.4_7.7839_0.002247,v_Elec_Log_-

8.5525_78.4_7.7839_0.002707,v_Elec_Log_-8.5525_78.4_7.7839_0.003167,v_Elec_Log_-

8.5525_78.4_7.7839_0.003627,v_Elec_Tanh_-8.5525_70.0_7.7839_0.001787,v_Elec_Tanh_-

8.5525_70.0_7.7839_0.002247,v_Elec_Tanh_-8.5525_70.0_7.7839_0.002707,v_Elec_Tanh_-

8.5525_70.0_7.7839_0.003167,v_Elec_Tanh_-8.5525_70.0_7.7839_0.003627,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.001787,v_Elec_Tanh_-8.5525_72.1_7.7839_0.002247,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.002707,v_Elec_Tanh_-8.5525_72.1_7.7839_0.003167,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.003627,v_Elec_Tanh_-8.5525_74.2_7.7839_0.001787,v_Elec_Tanh_-

8.5525_74.2_7.7839_0.002247,v_Elec_Tanh_-8.5525_74.2_7.7839_0.002707,v_Elec_Tanh_-

8.5525_74.2_7.7839_0.003167,v_Elec_Tanh_-8.5525_74.2_7.7839_0.003627,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.001787,v_Elec_Tanh_-8.5525_78.4_7.7839_0.002247,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.002707,v_Elec_Tanh_-8.5525_78.4_7.7839_0.003167,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.003627,v_Desol_1.0_1.0_2.5,v_Desol_1.0_1.0_3.0,v_Desol_1.0_1.0_3.5,

v_Desol_1.0_1.0_4.0,v_Desol_1.0_1.0_4.5,v_Desol_1.0_2.0_2.5,v_Desol_1.0_2.0_3.0,v_Desol_

1.0_2.0_3.5,v_Desol_1.0_2.0_4.0,v_Desol_1.0_2.0_4.5,v_Desol_1.0_3.0_2.5,v_Desol_1.0_3.0_

3.0,v_Desol_1.0_3.0_3.5,v_Desol_1.0_3.0_4.0,v_Desol_1.0_3.0_4.5,v_Desol_1.0_4.0_2.5,v_De

sol_1.0_4.0_3.0,v_Desol_1.0_4.0_3.5,v_Desol_1.0_4.0_4.0,v_Desol_1.0_4.0_4.5,v_Desol_1.0_

5.0_2.5,v_Desol_1.0_5.0_3.0,v_Desol_1.0_5.0_3.5,v_Desol_1.0_5.0_4.0,v_Desol_1.0_5.0_4.5,

v_Desol_2.0_1.0_2.5,v_Desol_2.0_1.0_3.0,v_Desol_2.0_1.0_3.5,v_Desol_2.0_1.0_4.0,v_Desol_

2.0_1.0_4.5,v_Desol_2.0_2.0_2.5,v_Desol_2.0_2.0_3.0,v_Desol_2.0_2.0_3.5,v_Desol_2.0_2.0_

4.0,v_Desol_2.0_2.0_4.5,v_Desol_2.0_3.0_2.5,v_Desol_2.0_3.0_3.0,v_Desol_2.0_3.0_3.5,v_De

sol_2.0_3.0_4.0,v_Desol_2.0_3.0_4.5,v_Desol_2.0_4.0_2.5,v_Desol_2.0_4.0_3.0,v_Desol_2.0_

4.0_3.5,v_Desol_2.0_4.0_4.0,v_Desol_2.0_4.0_4.5,v_Desol_2.0_5.0_2.5,v_Desol_2.0_5.0_3.0,

v_Desol_2.0_5.0_3.5,v_Desol_2.0_5.0_4.0,v_Desol_2.0_5.0_4.5,v_Desol_3.0_1.0_2.5,v_Desol_

3.0_1.0_3.0,v_Desol_3.0_1.0_3.5,v_Desol_3.0_1.0_4.0,v_Desol_3.0_1.0_4.5,v_Desol_3.0_2.0_

2.5,v_Desol_3.0_2.0_3.0,v_Desol_3.0_2.0_3.5,v_Desol_3.0_2.0_4.0,v_Desol_3.0_2.0_4.5,v_De

sol_3.0_3.0_2.5,v_Desol_3.0_3.0_3.0,v_Desol_3.0_3.0_3.5,v_Desol_3.0_3.0_4.0,v_Desol_3.0_

3.0_4.5,v_Desol_3.0_4.0_2.5,v_Desol_3.0_4.0_3.0,v_Desol_3.0_4.0_3.5,v_Desol_3.0_4.0_4.0,

v_Desol_3.0_4.0_4.5,v_Desol_3.0_5.0_2.5,v_Desol_3.0_5.0_3.0,v_Desol_3.0_5.0_3.5,v_Desol_

3.0_5.0_4.0,v_Desol_3.0_5.0_4.5,v_Desol_4.0_1.0_2.5,v_Desol_4.0_1.0_3.0,v_Desol_4.0_1.0_

3.5,v_Desol_4.0_1.0_4.0,v_Desol_4.0_1.0_4.5,v_Desol_4.0_2.0_2.5,v_Desol_4.0_2.0_3.0,v_De

sol_4.0_2.0_3.5,v_Desol_4.0_2.0_4.0,v_Desol_4.0_2.0_4.5,v_Desol_4.0_3.0_2.5,v_Desol_4.0_

3.0_3.0,v_Desol_4.0_3.0_3.5,v_Desol_4.0_3.0_4.0,v_Desol_4.0_3.0_4.5,v_Desol_4.0_4.0_2.5,

v_Desol_4.0_4.0_3.0,v_Desol_4.0_4.0_3.5,v_Desol_4.0_4.0_4.0,v_Desol_4.0_4.0_4.5,v_Desol_

4.0_5.0_2.5,v_Desol_4.0_5.0_3.0,v_Desol_4.0_5.0_3.5,v_Desol_4.0_5.0_4.0,v_Desol_4.0_5.0_

4.5,v_Desol_5.0_1.0_2.5,v_Desol_5.0_1.0_3.0,v_Desol_5.0_1.0_3.5,v_Desol_5.0_1.0_4.0,v_De

sol_5.0_1.0_4.5,v_Desol_5.0_2.0_2.5,v_Desol_5.0_2.0_3.0,v_Desol_5.0_2.0_3.5,v_Desol_5.0_

2.0_4.0,v_Desol_5.0_2.0_4.5,v_Desol_5.0_3.0_2.5,v_Desol_5.0_3.0_3.0,v_Desol_5.0_3.0_3.5,

v_Desol_5.0_3.0_4.0,v_Desol_5.0_3.0_4.5,v_Desol_5.0_4.0_2.5,v_Desol_5.0_4.0_3.0,v_Desol_

5.0_4.0_3.5,v_Desol_5.0_4.0_4.0,v_Desol_5.0_4.0_4.5,v_Desol_5.0_5.0_2.5,v_Desol_5.0_5.0_

3.0,v_Desol_5.0_5.0_3.5,v_Desol_5.0_5.0_4.0,v_Desol_5.0_5.0_4.5 
 
We finished this part of tutorial 2. 
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6.3. Tutorial 2. Running SFSXplorer 

In this part, we will run SFSXplorer for the dataset of tutorial 2. To run SFSXplorer open 

a terminal and go to the sfs directory. Then type the following command line: 

 

python3 sfsxplorer.py datasets/SFSXplorer_Tutorial_02/sfs_02.in all > 

datasets/SFSXplorer_Tutorial_02/sfs_02.log & 

 

We previously defined the sfsl_02.in and IC50.csv files. See section 5.3 for details.  

The above command line starts SFSXplorer taking sfs_02.in as an input file. SFSXplorer 

produces two output files (bind_IC50.csv and bind_IC50_stats_analysis.csv) and a log 

file (sfs_02.log). 

We have 352 energy terms to calculate (a total of 370 features), so it may take a few 

hours to run. It took 7 hours and 35 minutes to calculate the energy terms running on a 

notebook with an Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz.  

We finished this part of tutorial 2. 
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6.4. Tutorial 2. Machine Learning Modeling 

We will use SAnDReS 2.0 (Xavier et al., 2016) to explore the SFS using features found 

bind_IC50.csv file. Open a terminal and go to the directory where you have SAnDReS 

installed. Type the following command. 

 

python3 sandres2.py 

 

If everything goes fine you will have the window previously shown in Figure 4. You should 

follow the same sequence of commands described in section 5.4 with a small adjustment 

to accommodate extra features. 

We chose a different set of features (features_in) indicated in the ml_par.csv file. 

We show part of the ml_par.csv file below. We highlighted in blue what is modified in the 

ml_par.csv file (compared with Tutorial 01). 

 

preprocessing,StandardScaler 

ml_parameters,ml.csv         

scoring_function_file,scores.csv #File with features 

# Set up input parameters 

n_features,7 

features_in,Affinity(kcal/mol),v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.001787,v_Desol_4.0_5.0_4.5,v_VDW_8_4,v_HB_15_14,C,N 

target_in,pIC50 

test_size_in,0.3 

seed_in,271828 

# Set up regression methods 

mlr_method,AdaBoostRegressor    #AdaBoost Regression             

mlr_method,AdaBoostRegressorCV  #AdaBoost Regression 

 

Another adjustment is necessary for the file stats_01.csv, as shown in blue below. 

 

exp_string,pIC50 

# Define features 

n_features_in,370 

features_in,Ligand Occupation Factor,Torsions,Q,Average Q,Ligand B-factor(A2),Receptor B-

factor(A2),B-factor ratio (Ligand/Receptor),C,N,O,S,Affinity(kcal/mol),Gauss 1,Gauss 

2,Repulsion,Hydrophobic,Hydrogen,Torsional,v_VDW_8_2,v_VDW_8_3,v_VDW_8_4,v_VDW_8_5,v_VDW

_8_6,v_VDW_8_7,v_VDW_8_9,v_VDW_8_10,v_VDW_9_2,v_VDW_9_3,v_VDW_9_4,v_VDW_9_5,v_VDW_9_6,v_

VDW_9_7,v_VDW_9_8,v_VDW_9_10,v_VDW_10_2,v_VDW_10_3,v_VDW_10_4,v_VDW_10_5,v_VDW_10_6,v_VD

W_10_7,v_VDW_10_8,v_VDW_10_9,v_VDW_11_2,v_VDW_11_3,v_VDW_11_4,v_VDW_11_5,v_VDW_11_6,v_VD

W_11_7,v_VDW_11_8,v_VDW_11_9,v_VDW_11_10,v_VDW_12_2,v_VDW_12_3,v_VDW_12_4,v_VDW_12_5,v_V

DW_12_6,v_VDW_12_7,v_VDW_12_8,v_VDW_12_9,v_VDW_12_10,v_VDW_13_2,v_VDW_13_3,v_VDW_13_4,v_

VDW_13_5,v_VDW_13_6,v_VDW_13_7,v_VDW_13_8,v_VDW_13_9,v_VDW_13_10,v_VDW_14_2,v_VDW_14_3,v

_VDW_14_4,v_VDW_14_5,v_VDW_14_6,v_VDW_14_7,v_VDW_14_8,v_VDW_14_9,v_VDW_14_10,v_VDW_15_2,

v_VDW_15_3,v_VDW_15_4,v_VDW_15_5,v_VDW_15_6,v_VDW_15_7,v_VDW_15_8,v_VDW_15_9,v_VDW_15_10

,v_VDW_16_2,v_VDW_16_3,v_VDW_16_4,v_VDW_16_5,v_VDW_16_6,v_VDW_16_7,v_VDW_16_8,v_VDW_16_9

,v_VDW_16_10,v_HB_8_6,v_HB_8_7,v_HB_8_9,v_HB_8_10,v_HB_8_11,v_HB_8_12,v_HB_8_13,v_HB_8_1

4,v_HB_9_6,v_HB_9_7,v_HB_9_8,v_HB_9_10,v_HB_9_11,v_HB_9_12,v_HB_9_13,v_HB_9_14,v_HB_10_6

,v_HB_10_7,v_HB_10_8,v_HB_10_9,v_HB_10_11,v_HB_10_12,v_HB_10_13,v_HB_10_14,v_HB_11_6,v_H

B_11_7,v_HB_11_8,v_HB_11_9,v_HB_11_10,v_HB_11_12,v_HB_11_13,v_HB_11_14,v_HB_12_6,v_HB_12

_7,v_HB_12_8,v_HB_12_9,v_HB_12_10,v_HB_12_11,v_HB_12_13,v_HB_12_14,v_HB_13_6,v_HB_13_7,v

_HB_13_8,v_HB_13_9,v_HB_13_10,v_HB_13_11,v_HB_13_12,v_HB_13_14,v_HB_14_6,v_HB_14_7,v_HB_

14_8,v_HB_14_9,v_HB_14_10,v_HB_14_11,v_HB_14_12,v_HB_14_13,v_HB_15_6,v_HB_15_7,v_HB_15_8

,v_HB_15_9,v_HB_15_10,v_HB_15_11,v_HB_15_12,v_HB_15_13,v_HB_15_14,v_HB_16_6,v_HB_16_7,v_

HB_16_8,v_HB_16_9,v_HB_16_10,v_HB_16_11,v_HB_16_12,v_HB_16_13,v_HB_16_14,v_Elec_Log_-

8.5525_70.0_7.7839_0.001787,v_Elec_Log_-8.5525_70.0_7.7839_0.002247,v_Elec_Log_-

8.5525_70.0_7.7839_0.002707,v_Elec_Log_-8.5525_70.0_7.7839_0.003167,v_Elec_Log_-

8.5525_70.0_7.7839_0.003627,v_Elec_Log_-8.5525_72.1_7.7839_0.001787,v_Elec_Log_-

8.5525_72.1_7.7839_0.002247,v_Elec_Log_-8.5525_72.1_7.7839_0.002707,v_Elec_Log_-

8.5525_72.1_7.7839_0.003167,v_Elec_Log_-8.5525_72.1_7.7839_0.003627,v_Elec_Log_-

8.5525_74.2_7.7839_0.001787,v_Elec_Log_-8.5525_74.2_7.7839_0.002247,v_Elec_Log_-

8.5525_74.2_7.7839_0.002707,v_Elec_Log_-8.5525_74.2_7.7839_0.003167,v_Elec_Log_-

8.5525_74.2_7.7839_0.003627,v_Elec_Log_-
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8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Log_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Log_-

8.5525_78.4_7.7839_0.001787,v_Elec_Log_-8.5525_78.4_7.7839_0.002247,v_Elec_Log_-

8.5525_78.4_7.7839_0.002707,v_Elec_Log_-8.5525_78.4_7.7839_0.003167,v_Elec_Log_-

8.5525_78.4_7.7839_0.003627,v_Elec_Tanh_-8.5525_70.0_7.7839_0.001787,v_Elec_Tanh_-

8.5525_70.0_7.7839_0.002247,v_Elec_Tanh_-8.5525_70.0_7.7839_0.002707,v_Elec_Tanh_-

8.5525_70.0_7.7839_0.003167,v_Elec_Tanh_-8.5525_70.0_7.7839_0.003627,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.001787,v_Elec_Tanh_-8.5525_72.1_7.7839_0.002247,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.002707,v_Elec_Tanh_-8.5525_72.1_7.7839_0.003167,v_Elec_Tanh_-

8.5525_72.1_7.7839_0.003627,v_Elec_Tanh_-8.5525_74.2_7.7839_0.001787,v_Elec_Tanh_-

8.5525_74.2_7.7839_0.002247,v_Elec_Tanh_-8.5525_74.2_7.7839_0.002707,v_Elec_Tanh_-

8.5525_74.2_7.7839_0.003167,v_Elec_Tanh_-8.5525_74.2_7.7839_0.003627,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Tanh_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.001787,v_Elec_Tanh_-8.5525_78.4_7.7839_0.002247,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.002707,v_Elec_Tanh_-8.5525_78.4_7.7839_0.003167,v_Elec_Tanh_-

8.5525_78.4_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_70.0_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_72.1_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_74.2_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_76.30000000000001_7.7839_0.003627,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.001787,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.002247,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.002707,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.003167,v_Elec_Log_Tanh_-

8.5525_78.4_7.7839_0.003627,v_Desol_1.0_1.0_2.5,v_Desol_1.0_1.0_3.0,v_Desol_1.0_1.0_3.5,

v_Desol_1.0_1.0_4.0,v_Desol_1.0_1.0_4.5,v_Desol_1.0_2.0_2.5,v_Desol_1.0_2.0_3.0,v_Desol_

1.0_2.0_3.5,v_Desol_1.0_2.0_4.0,v_Desol_1.0_2.0_4.5,v_Desol_1.0_3.0_2.5,v_Desol_1.0_3.0_

3.0,v_Desol_1.0_3.0_3.5,v_Desol_1.0_3.0_4.0,v_Desol_1.0_3.0_4.5,v_Desol_1.0_4.0_2.5,v_De

sol_1.0_4.0_3.0,v_Desol_1.0_4.0_3.5,v_Desol_1.0_4.0_4.0,v_Desol_1.0_4.0_4.5,v_Desol_1.0_

5.0_2.5,v_Desol_1.0_5.0_3.0,v_Desol_1.0_5.0_3.5,v_Desol_1.0_5.0_4.0,v_Desol_1.0_5.0_4.5,

v_Desol_2.0_1.0_2.5,v_Desol_2.0_1.0_3.0,v_Desol_2.0_1.0_3.5,v_Desol_2.0_1.0_4.0,v_Desol_

2.0_1.0_4.5,v_Desol_2.0_2.0_2.5,v_Desol_2.0_2.0_3.0,v_Desol_2.0_2.0_3.5,v_Desol_2.0_2.0_

4.0,v_Desol_2.0_2.0_4.5,v_Desol_2.0_3.0_2.5,v_Desol_2.0_3.0_3.0,v_Desol_2.0_3.0_3.5,v_De

sol_2.0_3.0_4.0,v_Desol_2.0_3.0_4.5,v_Desol_2.0_4.0_2.5,v_Desol_2.0_4.0_3.0,v_Desol_2.0_

4.0_3.5,v_Desol_2.0_4.0_4.0,v_Desol_2.0_4.0_4.5,v_Desol_2.0_5.0_2.5,v_Desol_2.0_5.0_3.0,

v_Desol_2.0_5.0_3.5,v_Desol_2.0_5.0_4.0,v_Desol_2.0_5.0_4.5,v_Desol_3.0_1.0_2.5,v_Desol_

3.0_1.0_3.0,v_Desol_3.0_1.0_3.5,v_Desol_3.0_1.0_4.0,v_Desol_3.0_1.0_4.5,v_Desol_3.0_2.0_

2.5,v_Desol_3.0_2.0_3.0,v_Desol_3.0_2.0_3.5,v_Desol_3.0_2.0_4.0,v_Desol_3.0_2.0_4.5,v_De

sol_3.0_3.0_2.5,v_Desol_3.0_3.0_3.0,v_Desol_3.0_3.0_3.5,v_Desol_3.0_3.0_4.0,v_Desol_3.0_

3.0_4.5,v_Desol_3.0_4.0_2.5,v_Desol_3.0_4.0_3.0,v_Desol_3.0_4.0_3.5,v_Desol_3.0_4.0_4.0,

v_Desol_3.0_4.0_4.5,v_Desol_3.0_5.0_2.5,v_Desol_3.0_5.0_3.0,v_Desol_3.0_5.0_3.5,v_Desol_

3.0_5.0_4.0,v_Desol_3.0_5.0_4.5,v_Desol_4.0_1.0_2.5,v_Desol_4.0_1.0_3.0,v_Desol_4.0_1.0_

3.5,v_Desol_4.0_1.0_4.0,v_Desol_4.0_1.0_4.5,v_Desol_4.0_2.0_2.5,v_Desol_4.0_2.0_3.0,v_De

sol_4.0_2.0_3.5,v_Desol_4.0_2.0_4.0,v_Desol_4.0_2.0_4.5,v_Desol_4.0_3.0_2.5,v_Desol_4.0_

3.0_3.0,v_Desol_4.0_3.0_3.5,v_Desol_4.0_3.0_4.0,v_Desol_4.0_3.0_4.5,v_Desol_4.0_4.0_2.5,

v_Desol_4.0_4.0_3.0,v_Desol_4.0_4.0_3.5,v_Desol_4.0_4.0_4.0,v_Desol_4.0_4.0_4.5,v_Desol_

4.0_5.0_2.5,v_Desol_4.0_5.0_3.0,v_Desol_4.0_5.0_3.5,v_Desol_4.0_5.0_4.0,v_Desol_4.0_5.0_

4.5,v_Desol_5.0_1.0_2.5,v_Desol_5.0_1.0_3.0,v_Desol_5.0_1.0_3.5,v_Desol_5.0_1.0_4.0,v_De

sol_5.0_1.0_4.5,v_Desol_5.0_2.0_2.5,v_Desol_5.0_2.0_3.0,v_Desol_5.0_2.0_3.5,v_Desol_5.0_

2.0_4.0,v_Desol_5.0_2.0_4.5,v_Desol_5.0_3.0_2.5,v_Desol_5.0_3.0_3.0,v_Desol_5.0_3.0_3.5,

v_Desol_5.0_3.0_4.0,v_Desol_5.0_3.0_4.5,v_Desol_5.0_4.0_2.5,v_Desol_5.0_4.0_3.0,v_Desol_

5.0_4.0_3.5,v_Desol_5.0_4.0_4.0,v_Desol_5.0_4.0_4.5,v_Desol_5.0_5.0_2.5,v_Desol_5.0_5.0_

3.0,v_Desol_5.0_5.0_3.5,v_Desol_5.0_5.0_4.0,v_Desol_5.0_5.0_4.5 
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After finishing the statistical analysis (Machine Learning Box->For Modeling->Bivariate 

Analysis of Regression Models), we generated the following files: 

scores4xtal_test_stats_analysis_models.csv and 

scores4xtal_training_stats_analysis_models.csv. Figure 12 shows part of the 

scores4xtal_test_stats_analysis_models.csv file. Using the metrics indicated by Walsh 

(Walsh et al., 2021), we see that the model generated using BayesianRidgeCV shows 

the highest coefficient of determination (R2) (0.201283). 

 

Figure 12. Partial view of the scores4xtal_test_stats_analysis_models.csv file. 

 
To save the files generated for this modeling, we click on Machine Learning Box->For 

Modeling->Back Up Machine Learning Models. 

Click on the Yes option. After finishing the backup, we get the following message: 

SAnDReS finished the " Back Up Machine Learning Models" request! 

 

SAnDReS generated a folder named ml_models_date_time. We define the strings' date 

and time from the CPU clock. 

We may delete the files generated during the machine learning modeling and create a 

new set of models defining new features (features_in) in the file ml_par.csv. To delete 

the files previously saved, we click on Machine Learning Box->For Modeling->Delete 

Machine Learning Models. 

Click on the Yes option. After finishing deleting, we get the following message: 
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SAnDReS finished the "Delete Machine Learning Models " request! 

 

Repeating this process, we generate multiple sets of models and we choose the one with 

the best overall predictive performance. 

Here, we finished this part of tutorial 2. 
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6.5. Tutorial 2. Statistical Analysis 

In the last part of tutorial 2, we will generate scatter plots, for details see section 5.5. We 

will generate plots using scores4xtal_training.csv and scores4xtal_test.csv files. We 

focus on the scatter plots using data created with the BayesianRidgeCV method. Figures 

13 and 14 show the scatter plots. 

 

Figure 13. Scatter plot for BayesianRidgeCV vs. pIC50 (training set) 
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Figure 14. Scatter plot for BayesianRidgeCV vs. pIC50 (test set) 

 

Now, let's save our results as a zipped folder. Click on Setup->Project Directory->Backup 

Current Project. 

Click on the Yes option. It may take a few minutes. After backing up the current project 

directory, you get the following message: 

Successfully created a backup of the directory 

/home/walter/sfs/datasets/SFSXplorer_Tutorial_02/ 

 

You may delete or unzip this zipped folder using additional options in the Setup menu. 

 

To finish this session, click on Setup->Exit. 

Click on the Yes option. We finished Tutorial 2. 
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